<strong>Objective: </strong>Utilizing VISIA skin tester to quantitatively evaluate the effect of low energy far-infrared irradiation on healthy people’s facial skin. <strong>Methods:</strong> ...<strong>Objective: </strong>Utilizing VISIA skin tester to quantitatively evaluate the effect of low energy far-infrared irradiation on healthy people’s facial skin. <strong>Methods:</strong> 60 volunteers were selected in hospital from September 2019 to June 2020, and the total score of face, skin spots, texture, wrinkles and pores were observed before and after low energy far-infrared irradiation treatment with VISIA skin tester. <strong>Results:</strong> After 2 weeks of low energy far-infrared irradiation treatment, the total skin score of volunteers increased significantly (P < 0.01). In the itemized statistics, the moisture value, stain value and wrinkle value increased significantly (P < 0.05). <strong>Conclusion:</strong> Low energy far-infrared irradiation can significantly improve the facial skin quality of healthy people.展开更多
We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot resu...We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot results in more coherent superpositions in the low-lying states and exhibits unique anti-crossing in the two-electron FIR spectrum modulated by a magnetic field. We also find that the Coulomb correlation effect can make the FIR spectrum of coupled quantum dot without strict parity deviate greatly from Kohn theorem, which is just contrary to the symmetric case. Our results therefore suggest that FIR spectrum may be used to determine the symmetry of coupled quantum dot and to evaluate the degree of Coulomb interaction.展开更多
In order to study the mechanism of irradiation-induced damage ofbotanic samples caused by low energy heavy ions, transmission energy spectrum mea-surement was performed. Kidney bean slice samples 100μm in thickness w...In order to study the mechanism of irradiation-induced damage ofbotanic samples caused by low energy heavy ions, transmission energy spectrum mea-surement was performed. Kidney bean slice samples 100μm in thickness were irradi-ated by 50 kev N+ ions. The irradiation beam current density was about 30μA/cm2,and the irradiation ion doses were 1×1015, 1×1016, 3×1016 and 1×1017 ions@cm-2,respectively. A target set up that could greatly reduce the incident ion current densitywas designed to achieve the damage-free measurement. The 3.2 MeV H+ transmittedion energy spectrum measurement was carried out before and after the irradiation.From the transmission ion energy spectrum, it was found that the kidney bean sliceitself was structurally inhomogeneous compared with the PET films (C10HsO4). Ourresults indicated that the average mass thickness changed little when the N+ iondose was below 3×1016 ions.cm-2, but changed obviously whcn ion dose was beyond3×1016 ions.cm-2.展开更多
In this paper, the damage to methyl silicone rubber induced by irradiation with protons of 150 keV energy wasstudied. The surface morphology, tensile strength, Shore hardness, cross-linking density and glass transitio...In this paper, the damage to methyl silicone rubber induced by irradiation with protons of 150 keV energy wasstudied. The surface morphology, tensile strength, Shore hardness, cross-linking density and glass transition temperaturewere examined. Positron annihilation lifetime spectrum analysis (PALS) was perfomed to reveal the damage mechanisms ofthe rubber. The results showed that tensile strength and Shore hardness of the rubber increased first and then decreased withincreasing irradiation fluence. The PALS characteristics τ_3 and I_3, as well as the free volume V_f, decreased with increasingirradiation fluence up to 10^(15) cm^(-2), and then increased slowly. It indicates that proton irradiation causes a decrease of freevolume in the methyl silicone rubber when the fluence is less than 10^(15)cm^(-2), while the free volume increases when thefluence is greater than 10^(15)cm^(-2). The results on cross-linking density indicate that the cross-linking induced by protonirradiation is dominant at smaller proton fluences, increasing the tensile strength and Shore hardness of the rubber, while thedegradation of rubber dominates at greater fluence, leading to a decrease of tensile strength and Shore hardness.展开更多
The damage effects and mechanisms of proton irradiation with 50-200 keV energy to space-grade methyl silicone rubber was performed using a ground-based simulator for space irradiation environment. The changes in surfa...The damage effects and mechanisms of proton irradiation with 50-200 keV energy to space-grade methyl silicone rubber was performed using a ground-based simulator for space irradiation environment. The changes in surface morphology, mechanicai properties, cross-linking density, glass temperature, infrared attenuated total reflection spectrum, mass spectrum and pyrolysis gas chromatography-mass spectrum indicated that, under lower energy, the proton irradiation would induce cross-linking effect, resulting in an increase in tensile strengths and hardness of the methyl silicon rubber. However, after the irradiation of protons for more than 150 keV, the irradiation induced degradation, which decreased the tensile strengths and hardness, became a dominant effect. A macromolecular network destruction modei for the silicone rubber radiated vvith the protons was proposed.展开更多
It is found in this paper that the dielectric behavior of polyetherketone with cardo group (PEK- C) irradiated at a dose of 2.02 MGy has an obvious change. For the irradiated PEK-C, both the temperature spectrum of di...It is found in this paper that the dielectric behavior of polyetherketone with cardo group (PEK- C) irradiated at a dose of 2.02 MGy has an obvious change. For the irradiated PEK-C, both the temperature spectrum of dielectric loss factor (ε " ) within a range of 20-200 ℃ and the frequency spectrum of dielectric coefficient (ε’) in a range of 30 Hz-1 MHz show that ε" and ε’ increase from 5.4×10-3 to 4.6×10-1 andfrom 3 to 5, respectively.展开更多
On the basis of the growth mechanism of a GaAs/InAs nanoring, we propose a fine model which reflects the confinement details of real nanoring. Through calculations of the two-electron energy and far-infrared (FIR) s...On the basis of the growth mechanism of a GaAs/InAs nanoring, we propose a fine model which reflects the confinement details of real nanoring. Through calculations of the two-electron energy and far-infrared (FIR) spectra, we find that the ring topological structure and electron-electron interaction have great influence on the FIR spectra. The two unknown transition peaks in the experiment are determined theoretically. The theoretical results are in good agreement with the experiments.展开更多
A kind of alfalfa seeds was irradiated by 1, 2, 3, 4 and 5 kGy at a dose rate of 6.288 kGy·h-1 in a self-shielded irradiator of 137Cs gamma rays. The EPR spectra, which were measured subsequently between 0.3401 a...A kind of alfalfa seeds was irradiated by 1, 2, 3, 4 and 5 kGy at a dose rate of 6.288 kGy·h-1 in a self-shielded irradiator of 137Cs gamma rays. The EPR spectra, which were measured subsequently between 0.3401 and 0.3501 T, showed that there was a direct proportional relationship between the EPR signal strength of free radi- cals produced by gamma irradiation in the alfalfa seeds and absorbed dose. The first derivative EPR spectra of the al- falfa seeds were very clear and easy to identify. However, the EPR signal strength of the peak-to-peak amplitude de- creased rapidly and most of them decayed beyond 50% within 3 days after the seeds were irradiated. It tended to sta- bilize after half a month since the seeds were irradiated. The differences of the EPR signal strength between the irra- diated and unirradiated alfalfa seeds still remained. All seeds were stored at ambient temperature for more than 3 months. Therefore, using EPR spectrometry technique to measure free radicals in alfalfa seeds as a means to deter- mine whether the seeds have been irradiated or not is feasible, relatively fast and simple.展开更多
文摘<strong>Objective: </strong>Utilizing VISIA skin tester to quantitatively evaluate the effect of low energy far-infrared irradiation on healthy people’s facial skin. <strong>Methods:</strong> 60 volunteers were selected in hospital from September 2019 to June 2020, and the total score of face, skin spots, texture, wrinkles and pores were observed before and after low energy far-infrared irradiation treatment with VISIA skin tester. <strong>Results:</strong> After 2 weeks of low energy far-infrared irradiation treatment, the total skin score of volunteers increased significantly (P < 0.01). In the itemized statistics, the moisture value, stain value and wrinkle value increased significantly (P < 0.05). <strong>Conclusion:</strong> Low energy far-infrared irradiation can significantly improve the facial skin quality of healthy people.
基金supported by the National Natural Science Foundation of China (Grant No.11074025)the National Basic Research Program of China (Grant No.2011CB922200)a grant from the China Academy of Engineering Physics
文摘We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot results in more coherent superpositions in the low-lying states and exhibits unique anti-crossing in the two-electron FIR spectrum modulated by a magnetic field. We also find that the Coulomb correlation effect can make the FIR spectrum of coupled quantum dot without strict parity deviate greatly from Kohn theorem, which is just contrary to the symmetric case. Our results therefore suggest that FIR spectrum may be used to determine the symmetry of coupled quantum dot and to evaluate the degree of Coulomb interaction.
基金Supported by the National Natural Science Foundation of China (No.19675004 and No.19890300)
文摘In order to study the mechanism of irradiation-induced damage ofbotanic samples caused by low energy heavy ions, transmission energy spectrum mea-surement was performed. Kidney bean slice samples 100μm in thickness were irradi-ated by 50 kev N+ ions. The irradiation beam current density was about 30μA/cm2,and the irradiation ion doses were 1×1015, 1×1016, 3×1016 and 1×1017 ions@cm-2,respectively. A target set up that could greatly reduce the incident ion current densitywas designed to achieve the damage-free measurement. The 3.2 MeV H+ transmittedion energy spectrum measurement was carried out before and after the irradiation.From the transmission ion energy spectrum, it was found that the kidney bean sliceitself was structurally inhomogeneous compared with the PET films (C10HsO4). Ourresults indicated that the average mass thickness changed little when the N+ iondose was below 3×1016 ions.cm-2, but changed obviously whcn ion dose was beyond3×1016 ions.cm-2.
文摘In this paper, the damage to methyl silicone rubber induced by irradiation with protons of 150 keV energy wasstudied. The surface morphology, tensile strength, Shore hardness, cross-linking density and glass transition temperaturewere examined. Positron annihilation lifetime spectrum analysis (PALS) was perfomed to reveal the damage mechanisms ofthe rubber. The results showed that tensile strength and Shore hardness of the rubber increased first and then decreased withincreasing irradiation fluence. The PALS characteristics τ_3 and I_3, as well as the free volume V_f, decreased with increasingirradiation fluence up to 10^(15) cm^(-2), and then increased slowly. It indicates that proton irradiation causes a decrease of freevolume in the methyl silicone rubber when the fluence is less than 10^(15)cm^(-2), while the free volume increases when thefluence is greater than 10^(15)cm^(-2). The results on cross-linking density indicate that the cross-linking induced by protonirradiation is dominant at smaller proton fluences, increasing the tensile strength and Shore hardness of the rubber, while thedegradation of rubber dominates at greater fluence, leading to a decrease of tensile strength and Shore hardness.
文摘The damage effects and mechanisms of proton irradiation with 50-200 keV energy to space-grade methyl silicone rubber was performed using a ground-based simulator for space irradiation environment. The changes in surface morphology, mechanicai properties, cross-linking density, glass temperature, infrared attenuated total reflection spectrum, mass spectrum and pyrolysis gas chromatography-mass spectrum indicated that, under lower energy, the proton irradiation would induce cross-linking effect, resulting in an increase in tensile strengths and hardness of the methyl silicon rubber. However, after the irradiation of protons for more than 150 keV, the irradiation induced degradation, which decreased the tensile strengths and hardness, became a dominant effect. A macromolecular network destruction modei for the silicone rubber radiated vvith the protons was proposed.
基金The Project Supported by National Natural Science Foundation of China
文摘It is found in this paper that the dielectric behavior of polyetherketone with cardo group (PEK- C) irradiated at a dose of 2.02 MGy has an obvious change. For the irradiated PEK-C, both the temperature spectrum of dielectric loss factor (ε " ) within a range of 20-200 ℃ and the frequency spectrum of dielectric coefficient (ε’) in a range of 30 Hz-1 MHz show that ε" and ε’ increase from 5.4×10-3 to 4.6×10-1 andfrom 3 to 5, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11074025)the National Basic Research Program of China (Grant No. 2011CB922200)the China Academy of Engineering and Physics(‘909’)
文摘On the basis of the growth mechanism of a GaAs/InAs nanoring, we propose a fine model which reflects the confinement details of real nanoring. Through calculations of the two-electron energy and far-infrared (FIR) spectra, we find that the ring topological structure and electron-electron interaction have great influence on the FIR spectra. The two unknown transition peaks in the experiment are determined theoretically. The theoretical results are in good agreement with the experiments.
文摘A kind of alfalfa seeds was irradiated by 1, 2, 3, 4 and 5 kGy at a dose rate of 6.288 kGy·h-1 in a self-shielded irradiator of 137Cs gamma rays. The EPR spectra, which were measured subsequently between 0.3401 and 0.3501 T, showed that there was a direct proportional relationship between the EPR signal strength of free radi- cals produced by gamma irradiation in the alfalfa seeds and absorbed dose. The first derivative EPR spectra of the al- falfa seeds were very clear and easy to identify. However, the EPR signal strength of the peak-to-peak amplitude de- creased rapidly and most of them decayed beyond 50% within 3 days after the seeds were irradiated. It tended to sta- bilize after half a month since the seeds were irradiated. The differences of the EPR signal strength between the irra- diated and unirradiated alfalfa seeds still remained. All seeds were stored at ambient temperature for more than 3 months. Therefore, using EPR spectrometry technique to measure free radicals in alfalfa seeds as a means to deter- mine whether the seeds have been irradiated or not is feasible, relatively fast and simple.