Through analyzing the soil organic matters(N,P,K) of farmland cultivated with different years of Panax ginseng,this paper studied the changes in soil nutrients of farmland with different vertical depths and cultivatio...Through analyzing the soil organic matters(N,P,K) of farmland cultivated with different years of Panax ginseng,this paper studied the changes in soil nutrients of farmland with different vertical depths and cultivation years of P.ginseng.Results indicated that the vertical structure was obvious in soil nutrients of farmland with different cultivation years of P.ginseng;in most cases,the soil nutrient content gradually declined with the fibrous roots of P.ginseng spreading downward;the soil electrical conductivity(EC),total nitrogen(TN),total phosphorus(TP),total potassium(TK),available nitrogen,available phosphorus were manifested as surface layer > root layer > bottom layer,while the available potassium was manifested as surface soil and bottom layer > root layer;the soil pH changed in the range of 5.69-6.22,suitable for growth of P.ginseng.It is expected to provide theoretical basis for improvement of soil nutrients of farmland with cultivation of P.ginseng.展开更多
To provide reference for fertilizer application of sugarcane planting in Xinping County,this paper analyzed nutrient content of topsoil according to the nutrient indicators established in the Second Soil Census. The r...To provide reference for fertilizer application of sugarcane planting in Xinping County,this paper analyzed nutrient content of topsoil according to the nutrient indicators established in the Second Soil Census. The results show that 51. 76% soil in sugarcane planting area of Xinping County is faintly acid,50. 88% soil has relatively low organic matter,45. 88% soil lacks alkali-hydrolyzable nitrogen( N),26. 47% soil lacks phosphorus( P),50. 29% soil lacks potassium( K),37. 14% soil lacks sulfur( S),12. 86% soil lacks magnesium( Mg),10% soil lacks manganese( Mn),and 31. 43% soil lacks zinc( Zn). In the sugarcane production,it is required to pay attention to increase of application of organic fertilizer,to foster soil fertility,supplement boron fertilizer,to keep balance of soil nutrients.展开更多
中国科学院环江喀斯特生态系统观测研究站(本文中简称“环江站”)是我国西南喀斯特地区重要的农业生态系统长期野外定位观测研究站,是依照中国生态系统研究网络(Chinese Ecosystem Research Network,简称CERN)联网监测规范布置的试验样...中国科学院环江喀斯特生态系统观测研究站(本文中简称“环江站”)是我国西南喀斯特地区重要的农业生态系统长期野外定位观测研究站,是依照中国生态系统研究网络(Chinese Ecosystem Research Network,简称CERN)联网监测规范布置的试验样地。自2005年以来,环江站依照国家生态系统观测研究网络(National Ecosystem Research Network of China,简称CNERN)和CERN农田生态系统观测指标要求,逐一开展针对喀斯特峰丛洼地农田生态系统水分、土壤、生物、气象等环境要素的监测活动。本数据集收集、整理了环江站2006–2022年8个长期联网监测样地的土壤养分数据,包括土壤有机质、全氮、全磷、全钾、碱解氮、有效磷、速效钾、缓效钾、pH值等9项指标,均进行了严格的数据质量控制与评估,并附有完整的样地背景信息和分析方法记录。本数据集反映了桂西北喀斯特峰丛洼地农业区传统代表性作物早晚稻、玉米、大豆、桑叶、柑橘等农作地土壤常规养分含量动态变化,对指导喀斯特峰丛洼地农业生产、培育土壤地力具有参考依据。展开更多
Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil phys...Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil physical and chemical properties of farmland influenced by collapsing gully erosion is important in understanding the development of soil quality. This study was conducted at the Wuli Watershed of the Tongcheng County, south of Hubei Province, China. The aim is to investigate soil physical and chemical properties of three soil layers (0-20, 20-40 and 40-60 cm) for two farmland types (paddy field and upland field) in three regions influenced by collapsing gully erosion. The three regions are described as follows: strongly influenced region (SIR), weakly influenced region (WIR) and non-influenced region (NIR). The results show that collapsing gully erosion significantly increased the soil gravel and sand content in paddy and upland fields, especially the surface soil in the SIR and WIR. In the 0-20 cm layer of the paddy field, the highest gravel content (250.94 g kg-1) was in the SIR and the lowest (78.67 g kg-1) was in the NIR, but in the upland filed, the surface soil (0-20 cm) of the SIR and the 40-60 cm soil layer for the NIR had the highest (177.13 g kg-1) and the lowest (59.96 g kg-1) values of gravel content, respectively. The distribution of gravel and sand decreased with depth in the three influenced regions, but silt and clay showed the inverse change. In the paddy field, the average of sand content decreased from 58.6 (in the SIR) to 49.0% (in the NIR), but the silt content was in a reverse order, increasing from 27.9 to 36.9%, and the average of the clay content of three regions showed no significant variation (P〈0.05). But in the upland filed, the sand, silt and clay fluctuated in the NIR and the WIR. Soils in the paddy and upland field were highly acidic (pH〈5.2) in the SIR and WIR; moreover lower nutrient contents (soil organic matter (SOM), total N and available N, P, K) existed in the SIR. In the 0-20 cm soil layer of the paddy field, compared with the NIR and the WIR, collapsing gully erosion caused a very sharp decrease in the SOM and total N of the SIR (5.23 and 0.56 g kg-1, respectively). But in the surface soil (0-20 cm) of the upland field, the highest SOM, total N, available N, available P and available K occurred in the NIR, and the lowest ones were in the SIR. Compared with the NIR, the cation exchange capacity (CEC) in the SIR and WIR was found to be relatively lower. These results suggest that collapsing gully erosion seriously affect the soil physical and chemical properties of farmland, lead to coarse particles accumulation in the field and decrease pH and nutrient levels.展开更多
基金Supported by Program of Jinlin Province Science and Technology Department(20160308010YY)
文摘Through analyzing the soil organic matters(N,P,K) of farmland cultivated with different years of Panax ginseng,this paper studied the changes in soil nutrients of farmland with different vertical depths and cultivation years of P.ginseng.Results indicated that the vertical structure was obvious in soil nutrients of farmland with different cultivation years of P.ginseng;in most cases,the soil nutrient content gradually declined with the fibrous roots of P.ginseng spreading downward;the soil electrical conductivity(EC),total nitrogen(TN),total phosphorus(TP),total potassium(TK),available nitrogen,available phosphorus were manifested as surface layer > root layer > bottom layer,while the available potassium was manifested as surface soil and bottom layer > root layer;the soil pH changed in the range of 5.69-6.22,suitable for growth of P.ginseng.It is expected to provide theoretical basis for improvement of soil nutrients of farmland with cultivation of P.ginseng.
基金Supported by Special Fund for Scientific Research of Public Welfare Industry(Agriculture)(201003014-5)
文摘To provide reference for fertilizer application of sugarcane planting in Xinping County,this paper analyzed nutrient content of topsoil according to the nutrient indicators established in the Second Soil Census. The results show that 51. 76% soil in sugarcane planting area of Xinping County is faintly acid,50. 88% soil has relatively low organic matter,45. 88% soil lacks alkali-hydrolyzable nitrogen( N),26. 47% soil lacks phosphorus( P),50. 29% soil lacks potassium( K),37. 14% soil lacks sulfur( S),12. 86% soil lacks magnesium( Mg),10% soil lacks manganese( Mn),and 31. 43% soil lacks zinc( Zn). In the sugarcane production,it is required to pay attention to increase of application of organic fertilizer,to foster soil fertility,supplement boron fertilizer,to keep balance of soil nutrients.
文摘中国科学院环江喀斯特生态系统观测研究站(本文中简称“环江站”)是我国西南喀斯特地区重要的农业生态系统长期野外定位观测研究站,是依照中国生态系统研究网络(Chinese Ecosystem Research Network,简称CERN)联网监测规范布置的试验样地。自2005年以来,环江站依照国家生态系统观测研究网络(National Ecosystem Research Network of China,简称CNERN)和CERN农田生态系统观测指标要求,逐一开展针对喀斯特峰丛洼地农田生态系统水分、土壤、生物、气象等环境要素的监测活动。本数据集收集、整理了环江站2006–2022年8个长期联网监测样地的土壤养分数据,包括土壤有机质、全氮、全磷、全钾、碱解氮、有效磷、速效钾、缓效钾、pH值等9项指标,均进行了严格的数据质量控制与评估,并附有完整的样地背景信息和分析方法记录。本数据集反映了桂西北喀斯特峰丛洼地农业区传统代表性作物早晚稻、玉米、大豆、桑叶、柑橘等农作地土壤常规养分含量动态变化,对指导喀斯特峰丛洼地农业生产、培育土壤地力具有参考依据。
基金financially supported by the National Natural Science Foundation of China (41630858)
文摘Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil physical and chemical properties of farmland influenced by collapsing gully erosion is important in understanding the development of soil quality. This study was conducted at the Wuli Watershed of the Tongcheng County, south of Hubei Province, China. The aim is to investigate soil physical and chemical properties of three soil layers (0-20, 20-40 and 40-60 cm) for two farmland types (paddy field and upland field) in three regions influenced by collapsing gully erosion. The three regions are described as follows: strongly influenced region (SIR), weakly influenced region (WIR) and non-influenced region (NIR). The results show that collapsing gully erosion significantly increased the soil gravel and sand content in paddy and upland fields, especially the surface soil in the SIR and WIR. In the 0-20 cm layer of the paddy field, the highest gravel content (250.94 g kg-1) was in the SIR and the lowest (78.67 g kg-1) was in the NIR, but in the upland filed, the surface soil (0-20 cm) of the SIR and the 40-60 cm soil layer for the NIR had the highest (177.13 g kg-1) and the lowest (59.96 g kg-1) values of gravel content, respectively. The distribution of gravel and sand decreased with depth in the three influenced regions, but silt and clay showed the inverse change. In the paddy field, the average of sand content decreased from 58.6 (in the SIR) to 49.0% (in the NIR), but the silt content was in a reverse order, increasing from 27.9 to 36.9%, and the average of the clay content of three regions showed no significant variation (P〈0.05). But in the upland filed, the sand, silt and clay fluctuated in the NIR and the WIR. Soils in the paddy and upland field were highly acidic (pH〈5.2) in the SIR and WIR; moreover lower nutrient contents (soil organic matter (SOM), total N and available N, P, K) existed in the SIR. In the 0-20 cm soil layer of the paddy field, compared with the NIR and the WIR, collapsing gully erosion caused a very sharp decrease in the SOM and total N of the SIR (5.23 and 0.56 g kg-1, respectively). But in the surface soil (0-20 cm) of the upland field, the highest SOM, total N, available N, available P and available K occurred in the NIR, and the lowest ones were in the SIR. Compared with the NIR, the cation exchange capacity (CEC) in the SIR and WIR was found to be relatively lower. These results suggest that collapsing gully erosion seriously affect the soil physical and chemical properties of farmland, lead to coarse particles accumulation in the field and decrease pH and nutrient levels.