Intermittent fasting(IF)is an intervention that involves not only dietary modific-ations but also behavioral changes with the main core being a period of fasting alternating with a period of controlled feeding.The dur...Intermittent fasting(IF)is an intervention that involves not only dietary modific-ations but also behavioral changes with the main core being a period of fasting alternating with a period of controlled feeding.The duration of fasting differs from one regimen to another.Ramadan fasting(RF)is a religious fasting for Muslims,it lasts for only one month every one lunar year.In this model of fasting,observers abstain from food and water for a period that extends from dawn to sunset.The period of daily fasting is variable(12-18 hours)as Ramadan rotates in all seasons of the year.Consequently,longer duration of daily fasting is observed during the summer.In fact,RF is a peculiar type of IF.It is a dry IF as no water is allowed during the fasting hours,also there are no calorie restrictions during feeding hours,and the mealtime is exclusively nighttime.These three variables of the RF model are believed to have a variable impact on different liver diseases.RF was evaluated by different observational and interventional studies among patients with non-alcoholic fatty liver disease and it was associated with improve-ments in anthropometric measures,metabolic profile,and liver biochemistry regardless of the calorie restriction among lean and obese patients.The situation is rather different for patients with liver cirrhosis.RF was associated with adverse events among patients with liver cirrhosis irrespective of the underlying etiology of cirrhosis.Cirrhotic patients developed new ascites,ascites were increased,had higher serum bilirubin levels after Ramadan,and frequently developed hepatic encephalopathy and acute upper gastrointestinal bleeding.These complications were higher among patients with Child class B and C cirrhosis,and some fatalities occurred due to fasting.Liver transplant recipients as a special group of patients,are vulnerable to dehydration,fluctuation in blood immunosuppressive levels,likelihood of deterioration and hence observing RF without special precautions could represent a real danger for them.Patients with Gilbert syndrome can safely observe RF despite the minor elevations in serum bilirubin reported during the early days of fasting.展开更多
来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜...来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)开发了卫星电磁干扰监测软件,主要包括卫星数据库、观测模块和监测模块。近年来随着多个巨型卫星星座的规划发射以及望远镜观测模式的增多,卫星对射电天文观测的影响更为复杂,已有的软件已经不能满足实际的需要。为此,本文在单个卫星干扰分析的基础上提出了卫星星座的干扰评估方法,并对已有监测软件进行了升级,升级后卫星数据库覆盖更多的在轨卫星及星座信息且能够自动化更新,观测模块能够支持更多种观测模式下的卫星过境预测和干扰评估。在实际天文观测中,通过接在FAST接收机上的频谱仪数据对软件的干扰预测结果进行了实验验证,结果证明升级后的软件能够在多种观测模式下预测可能威胁的卫星以及对应的过境时间,为望远镜观测规划的调整、卫星干扰的规避和接收系统的保护提供重要的支撑。展开更多
为确定500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)与其周边公众移动通信(Public Mobile Telecommunications,PMT)系统的电磁兼容(electromagnetic compatibility,EMC)特性,本文综合论述了F...为确定500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)与其周边公众移动通信(Public Mobile Telecommunications,PMT)系统的电磁兼容(electromagnetic compatibility,EMC)特性,本文综合论述了FAST宁静区内中国移动、中国联通和中国电信三大运营商所属PMT基站对其产生的电磁干扰。首先,从射电天文业务的频谱划分谈起,论述了射电天文业务干扰源类型,引出了其运行保护标准,进而针对FAST详细说明了FAST宁静区的用频法规和保护要求;其次,分析了ITU-R建议电波传播预测与干扰分析方法,并通过实地测量验证了该方法的适用性,进一步针对性地分析了PMT基站的电磁辐射传播特性,综合评估了FAST宁静区内PMT基站的干扰情况:FAST宁静区域90.24%的PMT基站在一定程度上均会对FAST产生干扰,而在所选分析条件下,仅有43.14%的数据符合FAST保护要求;最后,针对PMT基站干扰信号的抑制和消除,分析了常用的射电天文射频干扰抑制方法,同时为保障FAST免受PMT基站干扰,从FAST和PMT基站的角度出发论述了可行的用频防护措施,并基于实施难度、经济成本、策略收益和通信质量4类指标建立了防护方法的评估体系,对所提防护方法进行了实例说明。上述研究成果可为保障FAST的安全观测提供技术基础。展开更多
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetic...Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetics,the sulfur redox kinetics for Li-S batteries is still not ultrafast.Herein,in this work,a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes(Pt&Co@NCNT)was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li_(2)S.The X-ray absorption near edge curves indicated the reversible conversion of Li_(2)Sx on the S/Pt&Co@NCNT electrode.Meanwhile,density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li_(2)S.As a result,the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80%at 100 cycles at a current density of 1.3 mA cm^(−2)(S loading:2.5 mg cm^(−2)).More importantly,an excellent rate performance was achieved with a high capacity of 822.1 mAh g^(−1) at a high current density of 12.7 mA cm^(−2).This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li-S batteries.展开更多
Human saliva is an indispensable fluid that maintains a healthy oral cavity which otherwise can lead to oral diseases(dental caries and periodontitis).In addition,salivary metabolites and microbiome profile provide ea...Human saliva is an indispensable fluid that maintains a healthy oral cavity which otherwise can lead to oral diseases(dental caries and periodontitis).In addition,salivary metabolites and microbiome profile provide early detection of systemic diseases such as cancer and obesity.Salivary diagnostic has gained popularity due to its non-invasive sampling technique.Fasting(abstinence from food or drink or both)research for weight loss and improve health is common,but studies using fasting saliva are scarce.Some metabolites in fasting saliva have been reported with interesting results,which can be enhanced by considering different confounding factors.For example,fasting saliva contains higher salivary nitrite,which is related to nitric oxide(NO).NO is a vasodilator supporting the healthy function of endothelial cells and its deficiency is connected to many diseases.The timely supply of NO through exogenous and endogenous means is highlighted and the potential advantage of fasting salivary composition changes in relation to COVID-19 infection is speculated.This review aims to provide a general discussion on the salivary composition,properties,and functions of the whole saliva,including the health benefits of fasting.展开更多
文摘Intermittent fasting(IF)is an intervention that involves not only dietary modific-ations but also behavioral changes with the main core being a period of fasting alternating with a period of controlled feeding.The duration of fasting differs from one regimen to another.Ramadan fasting(RF)is a religious fasting for Muslims,it lasts for only one month every one lunar year.In this model of fasting,observers abstain from food and water for a period that extends from dawn to sunset.The period of daily fasting is variable(12-18 hours)as Ramadan rotates in all seasons of the year.Consequently,longer duration of daily fasting is observed during the summer.In fact,RF is a peculiar type of IF.It is a dry IF as no water is allowed during the fasting hours,also there are no calorie restrictions during feeding hours,and the mealtime is exclusively nighttime.These three variables of the RF model are believed to have a variable impact on different liver diseases.RF was evaluated by different observational and interventional studies among patients with non-alcoholic fatty liver disease and it was associated with improve-ments in anthropometric measures,metabolic profile,and liver biochemistry regardless of the calorie restriction among lean and obese patients.The situation is rather different for patients with liver cirrhosis.RF was associated with adverse events among patients with liver cirrhosis irrespective of the underlying etiology of cirrhosis.Cirrhotic patients developed new ascites,ascites were increased,had higher serum bilirubin levels after Ramadan,and frequently developed hepatic encephalopathy and acute upper gastrointestinal bleeding.These complications were higher among patients with Child class B and C cirrhosis,and some fatalities occurred due to fasting.Liver transplant recipients as a special group of patients,are vulnerable to dehydration,fluctuation in blood immunosuppressive levels,likelihood of deterioration and hence observing RF without special precautions could represent a real danger for them.Patients with Gilbert syndrome can safely observe RF despite the minor elevations in serum bilirubin reported during the early days of fasting.
文摘来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)开发了卫星电磁干扰监测软件,主要包括卫星数据库、观测模块和监测模块。近年来随着多个巨型卫星星座的规划发射以及望远镜观测模式的增多,卫星对射电天文观测的影响更为复杂,已有的软件已经不能满足实际的需要。为此,本文在单个卫星干扰分析的基础上提出了卫星星座的干扰评估方法,并对已有监测软件进行了升级,升级后卫星数据库覆盖更多的在轨卫星及星座信息且能够自动化更新,观测模块能够支持更多种观测模式下的卫星过境预测和干扰评估。在实际天文观测中,通过接在FAST接收机上的频谱仪数据对软件的干扰预测结果进行了实验验证,结果证明升级后的软件能够在多种观测模式下预测可能威胁的卫星以及对应的过境时间,为望远镜观测规划的调整、卫星干扰的规避和接收系统的保护提供重要的支撑。
文摘为确定500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)与其周边公众移动通信(Public Mobile Telecommunications,PMT)系统的电磁兼容(electromagnetic compatibility,EMC)特性,本文综合论述了FAST宁静区内中国移动、中国联通和中国电信三大运营商所属PMT基站对其产生的电磁干扰。首先,从射电天文业务的频谱划分谈起,论述了射电天文业务干扰源类型,引出了其运行保护标准,进而针对FAST详细说明了FAST宁静区的用频法规和保护要求;其次,分析了ITU-R建议电波传播预测与干扰分析方法,并通过实地测量验证了该方法的适用性,进一步针对性地分析了PMT基站的电磁辐射传播特性,综合评估了FAST宁静区内PMT基站的干扰情况:FAST宁静区域90.24%的PMT基站在一定程度上均会对FAST产生干扰,而在所选分析条件下,仅有43.14%的数据符合FAST保护要求;最后,针对PMT基站干扰信号的抑制和消除,分析了常用的射电天文射频干扰抑制方法,同时为保障FAST免受PMT基站干扰,从FAST和PMT基站的角度出发论述了可行的用频防护措施,并基于实施难度、经济成本、策略收益和通信质量4类指标建立了防护方法的评估体系,对所提防护方法进行了实例说明。上述研究成果可为保障FAST的安全观测提供技术基础。
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
基金supported by the National Natural Science Foundation of China(22208039)the Basic Scientific Research Project of the Educational Department of Liaoning Province(LJKMZ20220878)+1 种基金and the Dalian Science and Technology Talent Innovation Support Plan(2022RQ036)supported by the Natural Science and Engineering Research Council of Canada(NSERC),the Canada Research Chair Program(CRC),the Canada Foundation for Innovation(CFI),and Western University。
文摘Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetics,the sulfur redox kinetics for Li-S batteries is still not ultrafast.Herein,in this work,a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes(Pt&Co@NCNT)was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li_(2)S.The X-ray absorption near edge curves indicated the reversible conversion of Li_(2)Sx on the S/Pt&Co@NCNT electrode.Meanwhile,density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li_(2)S.As a result,the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80%at 100 cycles at a current density of 1.3 mA cm^(−2)(S loading:2.5 mg cm^(−2)).More importantly,an excellent rate performance was achieved with a high capacity of 822.1 mAh g^(−1) at a high current density of 12.7 mA cm^(−2).This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li-S batteries.
文摘Human saliva is an indispensable fluid that maintains a healthy oral cavity which otherwise can lead to oral diseases(dental caries and periodontitis).In addition,salivary metabolites and microbiome profile provide early detection of systemic diseases such as cancer and obesity.Salivary diagnostic has gained popularity due to its non-invasive sampling technique.Fasting(abstinence from food or drink or both)research for weight loss and improve health is common,but studies using fasting saliva are scarce.Some metabolites in fasting saliva have been reported with interesting results,which can be enhanced by considering different confounding factors.For example,fasting saliva contains higher salivary nitrite,which is related to nitric oxide(NO).NO is a vasodilator supporting the healthy function of endothelial cells and its deficiency is connected to many diseases.The timely supply of NO through exogenous and endogenous means is highlighted and the potential advantage of fasting salivary composition changes in relation to COVID-19 infection is speculated.This review aims to provide a general discussion on the salivary composition,properties,and functions of the whole saliva,including the health benefits of fasting.