期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于K-Nearest Neighbor和神经网络的糖尿病分类研究 被引量:6
1
作者 陈真诚 杜莹 +3 位作者 邹春林 梁永波 吴植强 朱健铭 《中国医学物理学杂志》 CSCD 2018年第10期1220-1224,共5页
为实现糖尿病的早期筛查,提高对糖尿病分类的准确度,在研究有关糖尿病危险因素的基础上,增加糖化血红蛋白作为糖尿病早期筛查的特征之一。研究中选取与人类最为相似的食蟹猴作为研究对象,利用年龄、血压、腹围、BMI、糖化血红蛋白以及... 为实现糖尿病的早期筛查,提高对糖尿病分类的准确度,在研究有关糖尿病危险因素的基础上,增加糖化血红蛋白作为糖尿病早期筛查的特征之一。研究中选取与人类最为相似的食蟹猴作为研究对象,利用年龄、血压、腹围、BMI、糖化血红蛋白以及空腹血糖作为特征输入,将正常、糖尿病前期和糖尿病作为类别输出,利用K-Nearest Neighbor(KNN)和神经网络两种方法对其分类。发现在增加糖化血红蛋白作为分类特征之一时,KNN(K=3)和神经网络的分类准确率分别为81.8%和92.6%,明显高于没有这一特征时的准确率(68.1%和89.7%),KNN和神经网络都可以对食蟹猴数据进行分类和识别,起到早期筛查作用。 展开更多
关键词 糖尿病 糖化血红蛋白 空腹血糖 kNN 神经网络 食蟹猴
下载PDF
基于密度的kNN文本分类器训练样本裁剪方法 被引量:98
2
作者 李荣陆 胡运发 《计算机研究与发展》 EI CSCD 北大核心 2004年第4期539-545,共7页
随着WWW的迅猛发展 ,文本分类成为处理和组织大量文档数据的关键技术 kNN方法作为一种简单、有效、非参数的分类方法 ,在文本分类中得到广泛的应用 但是这种方法计算量大 ,而且训练样本的分布不均匀会造成分类准确率的下降 针对kNN... 随着WWW的迅猛发展 ,文本分类成为处理和组织大量文档数据的关键技术 kNN方法作为一种简单、有效、非参数的分类方法 ,在文本分类中得到广泛的应用 但是这种方法计算量大 ,而且训练样本的分布不均匀会造成分类准确率的下降 针对kNN方法存在的这两个问题 ,提出了一种基于密度的kNN分类器训练样本裁剪方法 ,这种方法不仅降低了kNN方法的计算量 ,而且使训练样本的分布密度趋于均匀 ,减少了边界点处测试样本的误判 实验结果显示 。 展开更多
关键词 文本分类 kNN 快速分类
下载PDF
基于密度的kNN分类器训练样本裁剪方法的改进 被引量:13
3
作者 熊忠阳 杨营辉 张玉芳 《计算机应用》 CSCD 北大核心 2010年第3期799-801,817,共4页
在文本分类中,训练集的分布状态会直接影响k-近邻(kNN)分类器的效率和准确率。通过分析基于密度的kNN文本分类器训练样本的裁剪方法,发现它存在两大不足:一是裁剪之后的均匀状态只是以ε为半径的球形区域意义上的均匀状态,而非最理想的... 在文本分类中,训练集的分布状态会直接影响k-近邻(kNN)分类器的效率和准确率。通过分析基于密度的kNN文本分类器训练样本的裁剪方法,发现它存在两大不足:一是裁剪之后的均匀状态只是以ε为半径的球形区域意义上的均匀状态,而非最理想的均匀状态即两两样本之间的距离相等;二是未对低密度区域的样本做任何处理,裁剪之后仍存在大量不均匀的区域。针对这两处不足,提出了以下两点改进:一是优化了裁剪策略,使裁剪之后的训练集更趋于理想的均匀状态;二是实现了对低密度区域样本的补充。通过实验对比,改进后的方法在稳定性和准确率方面都有明显提高。 展开更多
关键词 文本分类 k-近邻 快速分类 样本裁剪 样本补充
下载PDF
K近邻的自适应谱聚类快速算法 被引量:4
4
作者 范敏 王芬 +2 位作者 李泽明 李志勇 张晓波 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期147-152,共6页
谱聚类算法建立在谱图划分理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。然而,谱聚类算法涉及如何选取合适的尺度参数σ构造相似度矩阵的问题。并且,在处理大规模数据集时,聚类的过... 谱聚类算法建立在谱图划分理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。然而,谱聚类算法涉及如何选取合适的尺度参数σ构造相似度矩阵的问题。并且,在处理大规模数据集时,聚类的过程需要较大的时间和内存开销。研究从构造相似度矩阵入手,以传统NJW算法为基础,提出一种基于K近邻的自适应谱聚类快速算法FA-SC。该算法能自动确定尺度参数σ;同时,对输入数据集分块处理,并用基于K近邻的稀疏相似度矩阵保存样本信息,减少计算的内存开销,提高了运行速度。通过实验,与传统谱聚类算法比较,FA-SC算法在人工数据集和UCI数据集上能够取得更好的聚类效果。 展开更多
关键词 谱聚类 k近邻 稀疏矩阵 自适应 快速算法
下载PDF
基于模糊K近邻的语音情感识别 被引量:10
5
作者 纪正飚 王吉林 赵力 《微电子学与计算机》 CSCD 北大核心 2015年第3期59-62,共4页
传统的K近邻算法存在误判风险,针对其不足提出了一种基于模糊K近邻的语音情感识别算法,通过引入模糊隶属度的概念,求出不同的特征参数对于不同情感识别的贡献度,并将其与欧式距离加权应用于语音情感识别中,实验验证了算法的有效性.
关键词 语音情感识别 模糊类别隶属度 模糊k近邻
下载PDF
一种改进的A-KAZE算法在图像配准中的应用 被引量:10
6
作者 吴含前 李程超 谢珏 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期667-672,共6页
针对现有图像配准过程中难以保持图像的局部精度和边缘细节的问题,在A-KAZE算法的基础上提出了一种改进的图像特征提取算法AKAZE-ILDB.该算法首先利用非线性扩散滤波方程构造图像金字塔,采用快速显示扩散(FED)求得数值解,得到具有亚像... 针对现有图像配准过程中难以保持图像的局部精度和边缘细节的问题,在A-KAZE算法的基础上提出了一种改进的图像特征提取算法AKAZE-ILDB.该算法首先利用非线性扩散滤波方程构造图像金字塔,采用快速显示扩散(FED)求得数值解,得到具有亚像素精度的图像特征点坐标;然后利用改进的LDB(ILDB)描述子构造具有尺度和旋转不变性的图像特征向量,对特征向量采用汉明距离进行KNN匹配;最后基于仿射变换模型计算空间映射参数矩阵来实现图像配准.实验结果表明:在保持相同图像特征匹配正确率的情况下,AKAZE-ILDB算法比A-KAZE算法平均配准时间缩短了300 ms;在配准精度方面,比A-KAZE算法提高了3.7%,比传统特征提取算法SURF匹配正确率提高了29%. 展开更多
关键词 A-kAZE 非线性扩散滤波 FED kNN匹配 仿射变换
下载PDF
一种改进的KNN Web文本分类方法 被引量:9
7
作者 吴春颖 王士同 《计算机应用研究》 CSCD 北大核心 2008年第11期3275-3277,共3页
KNN方法存在两个不足:a)计算量巨大,它要求计算未知文本与所有训练样本间的相似度进而得到k个最近邻样本;b)当类别间有较多共性,即训练样本间有较多特征交叉现象时,KNN分类的精度将下降。针对这两个问题,提出了一种改进的KNN方法,该方... KNN方法存在两个不足:a)计算量巨大,它要求计算未知文本与所有训练样本间的相似度进而得到k个最近邻样本;b)当类别间有较多共性,即训练样本间有较多特征交叉现象时,KNN分类的精度将下降。针对这两个问题,提出了一种改进的KNN方法,该方法先通过Rocchio分类快速得到k0个最有可能的候选类别;然后在k0个类别训练文档中抽取部分代表样本采用KNN算法;最后由一种改进的相似度计算方法决定最终的文本所属类别。实验表明,改进的KNN方法在Web文本分类中能够获得较好的分类效果。 展开更多
关键词 WEB文本分类 k最近邻 快速分类
下载PDF
基于向量投影的KNN快速手写阿拉伯数字识别 被引量:2
8
作者 时恩早 《科技通报》 北大核心 2013年第12期127-129,共3页
传统K近邻(KNN)算法简单易于理解,但是求解过程中需要计算样本之间的距离,时间复杂度较高。针对这种不足,本文提出了一种基于向量投影的KNN快速算法。该算法首先计算二分类训练样本集中每一类的样本中心,并将所有的训练样本投影到样本... 传统K近邻(KNN)算法简单易于理解,但是求解过程中需要计算样本之间的距离,时间复杂度较高。针对这种不足,本文提出了一种基于向量投影的KNN快速算法。该算法首先计算二分类训练样本集中每一类的样本中心,并将所有的训练样本投影到样本中心所在的直线上。在进行样本分类时,先将无标签样本投影到样本中心所在的直线上,然后根据该无标签样本的投影点和训练样本的投影点之间的距离关系,确定样本的类别。在MNIST手写阿拉伯数字识别数据集上的仿真实验充分验证了本文算法的有效性。 展开更多
关键词 k近邻 向量投影 快速算法 无标签样本
下载PDF
基于改进KNN算法的AVS到H.264/AVC快速转码方法 被引量:1
9
作者 沈皓 《电视技术》 北大核心 2015年第8期35-39,共5页
尽管音视频编码标准(Audio and Video Coding Standdard,AVS)的编码性能可以与H.264相媲美,但是H.264的应用范围更加广泛,因此视频由AVS标准转码成H.264标准具有很大的应用前景。目前,主流的转码方法是将AVS的分块模式与H.264的分块模... 尽管音视频编码标准(Audio and Video Coding Standdard,AVS)的编码性能可以与H.264相媲美,但是H.264的应用范围更加广泛,因此视频由AVS标准转码成H.264标准具有很大的应用前景。目前,主流的转码方法是将AVS的分块模式与H.264的分块模式映射的方式降低转码复杂度,但是技术之间的差异导致这两种标准之间的分块模式并不是一一映射的关系,因此会导致编码效率大幅度降低。提出一种基于改进KNN(K最邻近节点)算法的AVS到H.264/AVC快速转码方法。充分利用了AVS码流中的各种信息,通过改进的KNN算法建立了中间信息和H.264分块模式之间的映射模型。根据AVS中运动矢量信息的差异自适应确定H.264可能的分块模式,实验结果表明上述问题得到有效解决,该算法在保证H.264编码效率的前提下大幅降低了转码复杂度。 展开更多
关键词 音视频编码标准 快速转码 k最邻近结点算法
下载PDF
An Approach to Speech Emotion Classification Using k-NN and SVMs
10
作者 Disne SIVALINGAM 《Instrumentation》 2021年第3期36-45,共10页
The interaction between humans and machines has become an issue of concern in recent years.Besides facial expressions or gestures,speech has been evidenced as one of the foremost promising modalities for automatic emo... The interaction between humans and machines has become an issue of concern in recent years.Besides facial expressions or gestures,speech has been evidenced as one of the foremost promising modalities for automatic emotion recognition.Effective computing means to support HCI(Human-Computer Interaction)at a psychological level,allowing PCs to adjust their reactions as per human requirements.Therefore,the recognition of emotion is pivotal in High-level interactions.Each Emotion has distinctive properties that form us to recognize them.The acoustic signal produced for identical expression or sentence changes is essentially a direct result of biophysical changes,(for example,the stress instigated narrowing of the larynx)set off by emotions.This connection between acoustic cues and emotions made Speech Emotion Recognition one of the moving subjects of the emotive computing area.The most motivation behind a Speech Emotion Recognition algorithm is to observe the emotional condition of a speaker from recorded Speech signals.The results from the application of k-NN and OVA-SVM for MFCC features without and with a feature selection approach are presented in this research.The MFCC features from the audio signal were initially extracted to characterize the properties of emotional speech.Secondly,nine basic statistical measures were calculated from MFCC and 117-dimensional features were consequently obtained to train the classifiers for seven different classes(Anger,Happiness,Disgust,Fear,Sadness,Disgust,Boredom and Neutral)of emotions.Next,Classification was done in four steps.First,all the 117-features are classified using both classifiers.Second,the best classifier was found and then features were scaled to[-1,1]and classified.In the third step,the with or without feature scaling which gives better performance was derived from the results of the second step and the classification was done for each of the basic statistical measures separately.Finally,in the fourth step,the combination of statistical measures which gives better performance was derived using the forward feature selection method Experiments were carried out using k-NN with different k values and a linear OVA-based SVM classifier with different optimal values.Berlin emotional speech database for the German language was utilized for testing the planned methodology and recognition rates as high as 60%accomplished for the recognition of emotion from voice signal for the set of statistical measures(median,maximum,mean,Inter-quartile range,skewness).OVA-SVM performs better than k-NN and the use of the feature selection technique gives a high rate. 展开更多
关键词 Mel Frequency Cepstral Coefficients(MFCC) fast Fourier Transformation(FFT) Discrete Cosine Transformation(DCT) k nearest neighbors(k-NN) Support Vector Machine(SVM) One-Vs-All(OVA)
下载PDF
基于多天线判决的CSI高效人体行为识别方法 被引量:7
11
作者 陶志勇 郭京 刘影 《计算机科学与探索》 CSCD 北大核心 2021年第6期1122-1132,共11页
人体运动和行为分析成为普适计算中一个新兴的研究领域,针对目前行为识别方法成本高、精度低等问题,提出一种基于多天线联合判决的信道状态信息(CSI)高效人体行为识别方法(MADR)。所提方法分为三步:数据处理、特征提取、动作行为分类。... 人体运动和行为分析成为普适计算中一个新兴的研究领域,针对目前行为识别方法成本高、精度低等问题,提出一种基于多天线联合判决的信道状态信息(CSI)高效人体行为识别方法(MADR)。所提方法分为三步:数据处理、特征提取、动作行为分类。首先,针对原始信号易受环境、设备干扰问题,该方法注重数据处理过程,分别使用Hampel、低通滤波器去除异常值、高频噪声,并进一步使用主成分分析去除带内噪声,得到平滑稳定的数据;其次,利用基于滑动方差的方式将包含时频域细节信息的第一主成分的无效信号进行剔除,得到有效表征行为动作的特征向量;最后,为充分利用多根天线的CSI特征,构建多个基于DTW的FKNN分类器在近邻样本级别上对行为动作进行联合判决。实验结果表明,该方法在会议室和实验室场景下的准确率分别为95.33%、92.67%,且与使用KNN分类器相比,大大缩短了系统训练时间。 展开更多
关键词 WiFi信道状态信息 多天线联合判决 行为识别 快速k近邻(fknn)
下载PDF
云计算中保护数据隐私的快速多关键词语义排序搜索方案 被引量:20
12
作者 杨旸 刘佳 +1 位作者 蔡圣暐 杨书略 《计算机学报》 EI CSCD 北大核心 2018年第6期1346-1359,共14页
可搜索加密技术主要解决在云服务器不完全可信的情况下,支持用户在密文上进行搜索.该文提出了一种快速的多关键词语义排序搜索方案.首先,该文首次将域加权评分的概念引入文档的评分当中,对标题、摘要等不同域中的关键词赋予不同的权重... 可搜索加密技术主要解决在云服务器不完全可信的情况下,支持用户在密文上进行搜索.该文提出了一种快速的多关键词语义排序搜索方案.首先,该文首次将域加权评分的概念引入文档的评分当中,对标题、摘要等不同域中的关键词赋予不同的权重加以区分.其次,对检索关键词进行语义拓展,计算语义相似度,将语义相似度、域加权评分和相关度分数三者结合,构造了更加准确的文档索引.然后,针对现有的MRSE(Multi-keyword Ranked Search over Encrypted cloud data)方案效率不高的缺陷,将创建的文档向量分块,生成维数较小的标记向量.通过对文档标记向量和查询标记向量的匹配,有效地过滤了大量的无关文档,减少了计算文档相关度分数和排序的时间,提高了搜索的效率.最后,在加密文档向量时,将文档向量分段,每一段与对应维度的矩阵相乘,使得构建索引的时间减少,进一步提高了方案的效率.理论分析和实验结果表明:该方案实现了快速的多关键词语义模糊排序搜索,在保障数据隐私安全的同时,有效地提高了检索效率,减少了创建索引的时间,并返回更加满足用户需求的排序结果. 展开更多
关键词 云计算 可搜索加密 语义相似度 域加权评分 快速kNN(k-nearest neighbor)算法
下载PDF
利用最近邻信息快速分类多标签数据 被引量:3
13
作者 乔健 田庆 《计算机工程与应用》 CSCD 北大核心 2011年第32期138-140,190,共4页
为克服ML-KNN在分类效率方面的局限性,提出了一种基于KNN的快速多标签数据分类算法FKMC,利用待分类实例的k个最近邻的局部信息进行排序分类。从已分类数据实例集中选择待分类数据实例的k个最近邻;根据每个最近邻拥有的标签数和每个标签... 为克服ML-KNN在分类效率方面的局限性,提出了一种基于KNN的快速多标签数据分类算法FKMC,利用待分类实例的k个最近邻的局部信息进行排序分类。从已分类数据实例集中选择待分类数据实例的k个最近邻;根据每个最近邻拥有的标签数和每个标签归属的最近邻数对待分类实例进行排序分类。仿真结果表明,最近邻的选择方法对分类器性能有显著的影响;在分类效果上FKMC与ML-KNN相当,有时甚至优于后者;而在分类效率上FKMC则显著优于ML-KNN。 展开更多
关键词 最近邻 快速分类 多标签数据 快速多标签数据分类算法(FkMC)
下载PDF
双层多目标遗传算法及应用 被引量:2
14
作者 于冲 吕剑虹 +1 位作者 吴科 赵亮 《中国电机工程学报》 EI CSCD 北大核心 2010年第S1期117-123,共7页
为解决工程应用中的多目标优化问题,提出一种双层多目标遗传算法(two-layer multi-objective genetic algorithm,TLMOGA)。该算法根据个体间的支配关系将种群分成2层,并分别采用快速k最邻近算法和净强度函数法为这2层中的个体分配适应... 为解决工程应用中的多目标优化问题,提出一种双层多目标遗传算法(two-layer multi-objective genetic algorithm,TLMOGA)。该算法根据个体间的支配关系将种群分成2层,并分别采用快速k最邻近算法和净强度函数法为这2层中的个体分配适应度。在此基础上,设计相应的个体排序和种群修剪策略,并确定了算法的整体流程。通过与传统多目标遗传算法进行比较,证明TLMOGA能够很好地保持解的收敛性和分布性,同时也具有较高的运算效率。最后,以ALSTOM气化炉基准控制器的参数优化整定为工程应用实例,进一步验证TLMOGA的有效性。仿真试验的结果表明,经优化后的控制系统,控制品质有了显著提高,达到了ALSTOM气化炉基准测试的要求。 展开更多
关键词 多目标遗传算法 快速k最邻近算法 净强度函数 ALSTOM气化炉 参数优化整定
下载PDF
基于最优密度估计的密度峰值聚类算法 被引量:2
15
作者 覃华 刘政 苏一丹 《计算机工程与设计》 北大核心 2020年第7期1877-1883,共7页
针对密度峰值聚类算法(clustering by fast search and find of density peaks,DPC)聚类无特定形状的实际数据集时聚类精度欠佳的问题,提出一种最优化密度估计的密度峰聚值类算法。使用最优Oracle逼近(Oracle approximating shrinkage,... 针对密度峰值聚类算法(clustering by fast search and find of density peaks,DPC)聚类无特定形状的实际数据集时聚类精度欠佳的问题,提出一种最优化密度估计的密度峰聚值类算法。使用最优Oracle逼近(Oracle approximating shrinkage,AS)计算出最优协方差矩阵,利用最优协方差矩阵构造马氏距离,通过最优协方差矩阵提高DPC对数据相似度的区分能力,在此基础上结合K近邻算法,实现数据样本密度最优估计,利用最优密度估计提高DPC对实际数据集的聚类精度。在人工数据集和UCI真实数据集上进行仿真实验,实验结果表明,改进DPC算法的思路是可行的。 展开更多
关键词 密度峰值聚类算法 k近邻 协方差矩阵 最优Oracle估计 最优密度估计
下载PDF
基于模糊集理论的二维线性鉴别分析新方法 被引量:1
16
作者 郑宇杰 杨静宇 +1 位作者 吴小俊 李勇智 《中国工程科学》 2007年第2期49-53,共5页
二维线性鉴别分析(2DLDA)是一种直接基于矩阵的特征提取方法,跳过传统的基于Fisher鉴别准则的线性鉴别分析方法中必须先将二维矩阵转化成一维矢量的过程,有效地提高了特征提取速度且避免了小样本问题,其识别率优于传统的Fisherface方法... 二维线性鉴别分析(2DLDA)是一种直接基于矩阵的特征提取方法,跳过传统的基于Fisher鉴别准则的线性鉴别分析方法中必须先将二维矩阵转化成一维矢量的过程,有效地提高了特征提取速度且避免了小样本问题,其识别率优于传统的Fisherface方法。结合模糊集理论,提出了一种新的2DLDA算法———模糊2DLDA(F1DLDA)算法。首先采用FKNN算法得到相应的样本分布信息,并按其对最后得到的特征向量所作的贡献融入到特征抽取过程中,得到有效的样本特征向量集。实验表明,F2DLDA算法的性能优于传统的2DLDA算法和Fisherface方法。 展开更多
关键词 二维线性鉴别分析 模糊二维线性鉴别分析 模糊集理论 特征提取 模糊k近邻
下载PDF
基于改进模糊核聚类的室内定位方法研究 被引量:3
17
作者 杜凯颖 张为公 王东 《测控技术》 CSCD 2018年第2期42-46,共5页
针对室内定位中,WiFi位置指纹法存在的定位实时性和精度的问题,提出一种基于改进模糊核聚类(KFCM)和加权K近邻(WKNN)结合的室内定位方法,旨在降低定位时间和改善定位精度。首先利用快速搜索和发现峰值聚类(CFSFDP)确定聚类数目和初始聚... 针对室内定位中,WiFi位置指纹法存在的定位实时性和精度的问题,提出一种基于改进模糊核聚类(KFCM)和加权K近邻(WKNN)结合的室内定位方法,旨在降低定位时间和改善定位精度。首先利用快速搜索和发现峰值聚类(CFSFDP)确定聚类数目和初始聚类中心,克服KFCM算法对初始聚类中心选取的依赖性而导致聚类结果不稳定的缺点,在此基础上,采用WKNN进行定位匹配,提高定位精度。实验表明,所提出方法相较于无聚类的室内定位方法,能在保证一定精度的前提下,减少定位计算量和时间。此外,将所提出方法与基于K均值、KFCM和CFSFDP的方法进行实验对比,结果显示,该方法具有更好的聚类效果和定位精度。 展开更多
关键词 室内定位 模糊核聚类 加权k近邻 快速搜索和发现峰值聚类
下载PDF
基于点云边界质心的粗配准方法 被引量:1
18
作者 陆尚鸿 李文国 《电子科技》 2022年第4期53-59,66,共8页
点云配准的质量直接影响着三维重建的质量。针对传统K-4PCS耗时长且易出现错误匹配等问题,文中提出一种基于边界质心的点云粗配准方法。通过对点云进行边界提取,既保留点云外表特征,又减少了点云数据的大小,提高了粗配准速度。为了加快... 点云配准的质量直接影响着三维重建的质量。针对传统K-4PCS耗时长且易出现错误匹配等问题,文中提出一种基于边界质心的点云粗配准方法。通过对点云进行边界提取,既保留点云外表特征,又减少了点云数据的大小,提高了粗配准速度。为了加快边界点的提取速度,使用K-D tree算法完成对k近邻点的搜索。通过配准边界点的质心,减少点云初始距离并增加重叠度,保证了粗配准的精度。实验结果证明,文中方法在粗配准速度和精度方面都优于传统K-4PCS算法,其速度约为传统K-4PCS算法的2倍,平移和旋转精度也比传统K-4PCS高了40%以上。文中所提方法对提高点云粗配准的速度和精度具有一定的参考价值。 展开更多
关键词 点云配准 粗配准 快速配准 边界提取 k近邻点 边界质心 k-4PCS k-D tree
下载PDF
MLP在雷达定量降水估测中的应用 被引量:2
19
作者 卓健 廖胜石 +2 位作者 苏传程 邓悦 张小琼 《热带气象学报》 CSCD 北大核心 2023年第3期289-299,共11页
通过临近时次、临近空间降水回波性质相似假设,以人工智能技术结合快速动态分级法(Fast Dynamic Categorical method,FDC)为核心,设计广西区域分钟级雷达定量降水估测产品模型。在单部雷达估测降水时,分两层三次使用感知器寻求合理的降... 通过临近时次、临近空间降水回波性质相似假设,以人工智能技术结合快速动态分级法(Fast Dynamic Categorical method,FDC)为核心,设计广西区域分钟级雷达定量降水估测产品模型。在单部雷达估测降水时,分两层三次使用感知器寻求合理的降水类型分类Z-I关系,首先将FDC看为一种多分类算法,根据单站雷达各级回波的降水估测结果误差将回波区内的站点分为强站点和弱站点两类,然后分别对这两类站点再次使用FDC建立新的强、弱两类Z-I关系。在多部雷达组网联合估测定量降水时,将各雷达估测值等权重看待,将单部雷达估测作为一个分支,通过连结方式构建一个多层感知器(Multilayer Perceptron,MLP)。无站点回波区采用K近邻算法(K-Nearest Neighbor,KNN)选择合适的MLP求得的Z-I关系估算降水量。对2019年3—10月试验产品进行检验分析,结果表明以区域站组成的训练组小时降水相关系数达0.9737,以国家级气象台站组成的测试组相关系数达0.8256。 展开更多
关键词 快速动态分级法 k近邻 多层感知器 定量降水估测 Z-I关系
下载PDF
基于动态选择启发值的改进TD-FTT算法 被引量:1
20
作者 李佳佳 刘晓静 +2 位作者 刘向宇 夏秀峰 朱睿 《计算机应用》 CSCD 北大核心 2018年第1期120-125,共6页
针对时间依赖路网中的K近邻(KNN)查询TD-FTT算法查询点发起时间与到达时间在同一时段的限制和预处理阶段计算时间代价大的问题,提出基于动态选择启发值改进的TD-FTT(ITD-FTT)算法。首先,在预处理阶段,根据各时段各边时间函数的最小值构... 针对时间依赖路网中的K近邻(KNN)查询TD-FTT算法查询点发起时间与到达时间在同一时段的限制和预处理阶段计算时间代价大的问题,提出基于动态选择启发值改进的TD-FTT(ITD-FTT)算法。首先,在预处理阶段,根据各时段各边时间函数的最小值构建最小路网Gmin;然后,在路网Gmin中利用网络泰森图(NVD)并行计算节点最近邻来减少预处理阶段的计算时间;最后,在查找阶段通过计算节点到达时间所在时段,动态选择启发值来解除时间段的限制。实验结果显示,在预处理阶段ITD-FTT算法比TD-FTT算法计算时间减少了70.12%;在查询阶段ITDFTT比TD-INE算法和TD-A算法在遍历节点个数上分别减少了46.52%和16.63%,响应时间比TD-INE算法和TD-A算法分别降低47.46%和18.24%。实验结果表明,ITD-FTT算法减少了查询扩展的节点数,降低了查找K近邻的时间,提高了查找效率。 展开更多
关键词 时间依赖路网 k近邻查询 TD-fW算法 预处理 网络泰森图
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部