We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The a...We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9%(24×5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)×10 7 cm/s.展开更多
A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch imp...A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.展开更多
The thin aluminum liners with an aspect ratio R/?r 1 have been imploded on the primary test stand(PTS) facility,where R is the outer radius of the liner and ?r is the thickness. The x-ray self-emission images present ...The thin aluminum liners with an aspect ratio R/?r 1 have been imploded on the primary test stand(PTS) facility,where R is the outer radius of the liner and ?r is the thickness. The x-ray self-emission images present azimuthally correlated perturbations in the liner implosions. The experiments show that at-10 ns before the stagnation, the wavelengths of perturbation are about 0.93 mm and 1.67 mm for the small-radius and large-radius liners, respectively. We have utilized the resistive magnetohydrodynamic code PLUTO to study the development of magneto-Rayleigh–Taylor(MRT) instabilities under experimental conditions. The calculated perturbation amplitudes are consistent with the experimental observations very well. We have found that both mode coupling and long implosion distance are responsible for the more developed instabilities in the large-radius liner implosions.展开更多
The basic concept of fast Z-pinch,and late progress in fast Z-pinch plasma research as HEDP and ICF research,especially as an approach for high yield low-cost fusion energy research,are summarized in this paper.The po...The basic concept of fast Z-pinch,and late progress in fast Z-pinch plasma research as HEDP and ICF research,especially as an approach for high yield low-cost fusion energy research,are summarized in this paper.The possible technical challenges of fast Z-pinch-driven ICF as fusion energy and it application prospect are discussed.展开更多
The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor rad...The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor radius magnetohydrodynamic (MHD) equations. The finite Larmor radius effects are introduced in the momentum equation with the sheared axial flow through an anisotropic ion stress tensor. In this paper a linear mode equation is derived that is valid for arbitrary kL, where k is the wave number and L is the plasma shell thickness. Numerical solutions are presented. The results indicate that the short-wavelength modes of the Rayleigh-Taylor instability are easily stabilized by the individual effect of the finite Larmor radius or the sheared axial flow. The assembling effects of the finite Larmor radius and sheared axial flow can heavily mitigate the Rayleigh-Taylor instability, and the unstable region can be compressed considerably.展开更多
In the present paper, based on the incomepressible finite Larmor radius (FLR) magnetohydrodynamic ( MHD ) equations, we consider the stabilizing effect of the finite Larmor radius on the Rayleigh-Taylor ( RT ) i...In the present paper, based on the incomepressible finite Larmor radius (FLR) magnetohydrodynamic ( MHD ) equations, we consider the stabilizing effect of the finite Larmor radius on the Rayleigh-Taylor ( RT ) instability in implosions of annular Z-pinch plasma. Here, the FLR is considered as a type of viscositytll, independent of any collisions (i.e., collisionless viscosity, or gyrouiscosity ). Since we are introducing a sheared velocity,展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10635050)
文摘We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9%(24×5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)×10 7 cm/s.
基金This work was supported by the National Natural Science Foundation of China No.10035020.
文摘A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.
基金supported by the National Natural Science Foundation of China(Grant Nos.11605013,11775032,11805019,and 11705013)
文摘The thin aluminum liners with an aspect ratio R/?r 1 have been imploded on the primary test stand(PTS) facility,where R is the outer radius of the liner and ?r is the thickness. The x-ray self-emission images present azimuthally correlated perturbations in the liner implosions. The experiments show that at-10 ns before the stagnation, the wavelengths of perturbation are about 0.93 mm and 1.67 mm for the small-radius and large-radius liners, respectively. We have utilized the resistive magnetohydrodynamic code PLUTO to study the development of magneto-Rayleigh–Taylor(MRT) instabilities under experimental conditions. The calculated perturbation amplitudes are consistent with the experimental observations very well. We have found that both mode coupling and long implosion distance are responsible for the more developed instabilities in the large-radius liner implosions.
基金National Natural Science Foundation Project(10375010)
文摘The basic concept of fast Z-pinch,and late progress in fast Z-pinch plasma research as HEDP and ICF research,especially as an approach for high yield low-cost fusion energy research,are summarized in this paper.The possible technical challenges of fast Z-pinch-driven ICF as fusion energy and it application prospect are discussed.
基金The project supported by the National Natural Science Foundation of China (Nos. 10035020 and 40390150)
文摘The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor radius magnetohydrodynamic (MHD) equations. The finite Larmor radius effects are introduced in the momentum equation with the sheared axial flow through an anisotropic ion stress tensor. In this paper a linear mode equation is derived that is valid for arbitrary kL, where k is the wave number and L is the plasma shell thickness. Numerical solutions are presented. The results indicate that the short-wavelength modes of the Rayleigh-Taylor instability are easily stabilized by the individual effect of the finite Larmor radius or the sheared axial flow. The assembling effects of the finite Larmor radius and sheared axial flow can heavily mitigate the Rayleigh-Taylor instability, and the unstable region can be compressed considerably.
文摘In the present paper, based on the incomepressible finite Larmor radius (FLR) magnetohydrodynamic ( MHD ) equations, we consider the stabilizing effect of the finite Larmor radius on the Rayleigh-Taylor ( RT ) instability in implosions of annular Z-pinch plasma. Here, the FLR is considered as a type of viscositytll, independent of any collisions (i.e., collisionless viscosity, or gyrouiscosity ). Since we are introducing a sheared velocity,