期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Augmented Lagrangian Methods for Convex Matrix Optimization Problems
1
作者 Ying Cui Chao Ding +1 位作者 Xu-Dong Li Xin-Yuan Zhao 《Journal of the Operations Research Society of China》 EI CSCD 2022年第2期305-342,共38页
In this paper,we provide some gentle introductions to the recent advance in augmented Lagrangian methods for solving large-scale convex matrix optimization problems(cMOP).Specifically,we reviewed two types of sufficie... In this paper,we provide some gentle introductions to the recent advance in augmented Lagrangian methods for solving large-scale convex matrix optimization problems(cMOP).Specifically,we reviewed two types of sufficient conditions for ensuring the quadratic growth conditions of a class of constrained convex matrix optimization problems regularized by nonsmooth spectral functions.Under a mild quadratic growth condition on the dual of cMOP,we further discussed the R-superlinear convergence of the Karush-Kuhn-Tucker(KKT)residuals of the sequence generated by the augmented Lagrangian methods(ALM)for solving convex matrix optimization problems.Implementation details of the ALM for solving core convex matrix optimization problems are also provided. 展开更多
关键词 Matrix optimization Spectral functions Quadratic growth conditions Metric subregularity Augmented Lagrangian methods fast convergence rates Semismooth Newton methods
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部