期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Development of an Evaluation Methodology for Fuel Discharge in Core Disruptive Accidents of Sodium-Cooled Fast Reactors
1
作者 Kenji Kamiyama Yoshiharu Tobita Tohru Suzuki Ken-ichi Matsuba 《Journal of Energy and Power Engineering》 2014年第5期785-793,共9页
The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), si... The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), since fuel discharge will decrease the core reactivity and CRGTs have a potential to provide an effective discharge path. Fuel discharge contains multi-component fluid dynamics with phase changes, and, in the present study, the SFR safety analysis code SIMMER (Sn, implicit, multifield, multicomponent, Eulerian recriticality) was utilized as a technical basis. First, dominant phenomena affecting fuel discharge through the CRGT are identified based on parametric calculations by the SIMMER code. Next, validations on the code models closely relating to these phenomena were carried out based on experimental data. It was shown that the SIMMER code with some model modifications could reproduce the experimental results appropriately. Through the present study, the evaluation methodology for the molten-fuel discharge through the CRGT was successfully developed. 展开更多
关键词 Sodium-cooled fast reactor core disruptive accident molten-fuel discharge FBR fast breeder reactor) safety analysis code SIMMER.
下载PDF
Theoretical simulation of high-voltage discharge with runaway electrons in sulfur hexafluoride at atmospheric pressure
2
作者 Andrey V.Kozyrev Vasily Yu.Kozhevnikov Natalia S.Semeniuk 《Matter and Radiation at Extremes》 SCIE EI CAS 2016年第5期264-268,共5页
The results of theoretical simulation of runaway electron generation in high-pressure pulsed gas discharge with inhomogeneous electric field are presented.Hydrodynamic and kinetic approaches are used simultaneously to... The results of theoretical simulation of runaway electron generation in high-pressure pulsed gas discharge with inhomogeneous electric field are presented.Hydrodynamic and kinetic approaches are used simultaneously to describe the dynamics of different components of low-temperature discharge plasma.Breakdown of coaxial diode occurs in the form of a dense plasma region expanding from the cathode.On this background there is a formation of runaway electrons that are initiated by the ensemble of plasma electrons generated in the place locally enhanced electric field in front of dense plasma.It is shown that the power spectrum of fast electrons in the discharge contains electron group with the so-called“anomalous”energy. 展开更多
关键词 Pulsed gas discharge High-pressure gas breakdown fast electron in gas discharge Runaway electron in plasma
下载PDF
Revisiting the electrode manufacturing: A look into electrode rheology and active material microenvironment
3
作者 Yan He Lei Jing +4 位作者 Yuan Ji Zhiwei Zhu Lanxiang Feng Xuewei Fu Yu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期41-55,I0002,共16页
The microstructures on electrode level are crucial for battery performance, but the ambiguous understanding of both electrode microstructures and their structuring process causes critical challenges in controlling and... The microstructures on electrode level are crucial for battery performance, but the ambiguous understanding of both electrode microstructures and their structuring process causes critical challenges in controlling and evaluating the electrode quality during fabrication. In this review, analogous to the cell microenvironment well-known in biology, we introduce the concept of ‘‘active material microenvironment”(ME@AM)that is built by the ion/electron transport structures surrounding the AMs, for better understanding the significance of the electrode microstructures. Further, the scientific significance of electrode processing for electrode quality control is highlighted by its strong links to the structuring and quality control of ME@AM. Meanwhile, the roles of electrode rheology in both electrode structuring and structural characterizations involved in the entire electrode manufacturing process(i.e., slurry preparation, coating/printing/extrusion, drying and calendering) are specifically detailed. The advantages of electrode rheology testing on in-situ characterizations of the electrode qualities/structures are emphasized. This review provides a glimpse of the electrode rheology engaged in electrode manufacturing process and new insights into the understanding and effective regulation of electrode microstructures for future high-performance batteries. 展开更多
关键词 Active material microenvironment Electrode microstructures and rheology Battery manufacturing High energy and power density fast charging and discharging
下载PDF
Stage identification and process optimization for fast drilling EDM of film cooling holes using KBSI method
4
作者 Jian Wang Xue-Cheng Xi +2 位作者 Ya-Ou Zhang Fu-Chun Zhao Wan-Sheng Zhao 《Advances in Manufacturing》 SCIE EI CAS CSCD 2023年第3期477-491,共15页
Fast drilling electrical discharge machining(EDM)is widely used in the manufacture of film cooling holes of turbine blades.However,due to the various hole orientations and severe electrode wear,it is relatively intric... Fast drilling electrical discharge machining(EDM)is widely used in the manufacture of film cooling holes of turbine blades.However,due to the various hole orientations and severe electrode wear,it is relatively intricate to accurately and timely identify the critical moments such as breakout,hole completion in the drilling process,and adjust the machining strategy properly.Existing breakout detection and hole completion determination methods are not suitable for the high-efficiency and fully automatic production of film cooling holes,for they almost all depend on preset thresholds or training data and become less appropriate when machining condition changes.As the breakout and hole completion detection problems can be abstracted to an online stage identification problem,in this paper,a kurtosis-based stage identification(KBSI)method,which uses a novel normalized kurtosis to denote the recent changing trends of gap voltage signals,is developed for online stage identification.The identification accuracy and generalization ability of the KBSI method have been verified in various machining conditions.To improve the overall machining efficiency,the influence of servo control parameters on machining efficiency of each machining stage was analyzed experimentally,and a new stage-wise adaptive control strategy was then proposed to dynamically adjust the servo control parameters according to the online identification results.The performance of the new strategy is evaluated by drilling film cooling holes at different hole orientations.Experimental results show that with the new control strategy,machining efficiency and the machining quality can be significantly improved. 展开更多
关键词 fast drilling electrical discharge machining(EDM) Film cooling holes Breakout detection Hole completion determination Stage identification Process optimization
原文传递
Temperature and electron density of soil plasma generated by LA-FPDPS 被引量:5
5
作者 Xia-Fen Li Wei-Dong Zhou Zhi-Feng Cui 《Frontiers of physics》 SCIE CSCD 2012年第6期721-727,共7页
Electron temperature and electron number density are important parameters in the characterization of plasma. In this paper the electron temperature and electron number density of soil plasma generated by laser ablatio... Electron temperature and electron number density are important parameters in the characterization of plasma. In this paper the electron temperature and electron number density of soil plasma generated by laser ablation combined with nanosecond discharge spark at different discharge voltages have been studied. Saha-Boltzmann plot and Stark broadening are used to determine the temper- ature and electron number density. It is proved that local thermal equilibrium is fulfilled in the nanosecond spark enhanced plasma. The enhanced optical emission, signal to noise ratio and the stability in term of the relative standard deviation of signal intensity at different spark voltages were investigated in detail. A relative stable discharge process was observed with use of a 10 kV discharge voltage under the carried experimental configuration. 展开更多
关键词 laser ablation fast pulse discharge plasma spectroscopy (LA-FPDPS) local thermodynamic equilibrium (LTE) electron temperature electron number density discharge voltage
原文传递
A transient-enhanced NMOS low dropout voltage regulator with parallel feedback compensation 被引量:2
6
作者 王菡 谭林 《Journal of Semiconductors》 EI CAS CSCD 2016年第2期131-136,共6页
This paper presents a transient-enhanced NMOS low-dropout regulator (LDO) for portable applications with parallel feedback compensation. The parallel feedback structure adds a dynamic zero to get an adequate phase m... This paper presents a transient-enhanced NMOS low-dropout regulator (LDO) for portable applications with parallel feedback compensation. The parallel feedback structure adds a dynamic zero to get an adequate phase margin with a load current variation from 0 to 1 A. A class-AB error amplifier and a fast charging/discharging unit are adopted to enhance the transient performance. The proposed LDO has been implemented in a 0.35 μm BCD process. From experimental results, the regulator can operate with a minimum dropout voltage of 150 mV at a maximum 1 A load and IQ of 165 μA. Under the full range load current step, the voltage undershoot and overshoot of the proposed LDO are reduced to 38 mV and 27 mV respectively. 展开更多
关键词 parallel feedback compensation class-AB amplifier fast charging/discharging unit transient re-sponse low-dropout regulator (LDO)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部