期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fast frequency response of inverter-based resources and its impact on system frequency characteristics 被引量:2
1
作者 Lining Su Xiaohui Qin +3 位作者 Shang Zhang Yantao Zhang Yilang Jiang Yi Han 《Global Energy Interconnection》 2020年第5期475-485,共11页
The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based r... The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based resources is an important mitigation option for maintaining grid security under the conditions of low inertia and insufficient primary frequency response capability. However, the understanding and technical characteristics of the FFR of inverter-based resources are still unclear. Aiming at solving the aforementioned problems, this paper proposes a definition for FFR based on the impact mechanism of FFR on system frequency. The performance requirements of FFR are clarified. Then, the effects of FFR on system frequency characteristics are further analyzed based on steady-state frequency deviation, the initial rate of change of frequency, and the maximum transient frequency deviation. Finally, the system requirements for FFR and its application effects are verified by simulating an actual bulk power grid, providing technical support for subsequent engineering application. 展开更多
关键词 fast frequency response Rate of change of frequency frequency deviation ROCOF-based FFR Deviation-based FFR
下载PDF
Contingency Reserve Evaluation for Fast Frequency Response of Multiple Battery Energy Storage Systems in a Large-scale Power Grid
2
作者 Indira Alcaide-Godinez Feifei Bai +1 位作者 Tapan Kumar Saha Rizah Memisevic 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第3期873-883,共11页
Recently,the fast frequency response(FFR)service by large-scale battery energy storage systems(BESSs)has been successfully proved to arrest the frequency excursion during an unexpected power outage.However,adequate fr... Recently,the fast frequency response(FFR)service by large-scale battery energy storage systems(BESSs)has been successfully proved to arrest the frequency excursion during an unexpected power outage.However,adequate frequency response relies on proper evaluation of the contingency reserve of BESSs.The BESS FFR reserve is commonly managed under fixed contracts,ignoring various response characteristics of different BESSs and their coexisting interactions.This paper proposes a new methodology based on dynamic grid response and various BESS response characteristics to optimise the FFR reserves and prevent the frequency from breaching the under-frequency load shedding(UFLS)thresholds.The superiority of the proposed method is demonstrated to manage three large-scale BESSs operating simultaneously in an Australian power grid under high renewable penetration scenarios.Further,the proposed method can identify remaining battery power and energy reserve to be safely utilised for other grid services(e.g.,energy arbitrage).The results can provide valuable insights for integrating FFR into conventional ancillary services and techno-effective management of multiple BESSs. 展开更多
关键词 fast frequency response(FFR) fast frequency contingency reserve multiple large-scale battery energy storage system(BESS) synthetic inertia requirement under-frequency load shedding(UFLS)
原文传递
High Density 3D Carbon Tube Nanoarray Electrode Boosting the Capacitance of Filter Capacitor
3
作者 Gan Chen Fangming Han +6 位作者 Huachun Ma Pei Li Ziyan Zhou Pengxiang Wang Xiaoyan Li Guowen Meng Bingqing Wei 《Nano-Micro Letters》 SCIE EI CAS 2024年第11期242-254,共13页
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre... Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization. 展开更多
关键词 Compactly arranged Three-dimensional carbon tube nanoarray Dimensional carbon tube nanoarray fast frequency response Electric double-layer capacitors Layer capacitors AC line-filtering Filtering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部