期刊文献+
共找到1,045篇文章
< 1 2 53 >
每页显示 20 50 100
CEEMD-FastICA-CWT联合瞬态响应阶次的电驱总成噪声源识别
1
作者 张威 景国玺 +2 位作者 武一民 杨征睿 高辉 《中国测试》 CAS 北大核心 2024年第4期144-152,共9页
以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastI... 以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastICA)方法提取纯电模式稳态工况下单一通道噪声信号特征,利用复Morlet小波变换及FFT对各分量信号时频特性进行识别。其次,采用阶次分析法和声能叠加法对稳态分量信号对应的各瞬态响应阶次能量进行对比分析,并结合皮尔逊积矩相关系数(Pearson product moment correlation coefficient,PPMCC)相似性识别确定不同噪声激励源贡献度。结果表明:减速齿副啮合噪声对该增程式电驱总成纯电模式运行噪声整体贡献度最大。 展开更多
关键词 电驱动总成 噪声源识别 互补集合经验模态分解 快速独立分量分析 连续小波变换 阶次分析
下载PDF
基于FastICA-LDA的光伏并网逆变器故障诊断
2
作者 张磊 余茂全 夏远洋 《新余学院学报》 2024年第5期40-48,共9页
为了实现逆变器开路故障诊断,提出了一种新的诊断方法。该方法采用快速独立成分分析算法判定逆变器是否发生单管开路故障,如果发生单管开路故障,计算旋转电流Id频域下的特征值,将这些特征值作为线性判别分析模型的输入值,最后由LDA模型... 为了实现逆变器开路故障诊断,提出了一种新的诊断方法。该方法采用快速独立成分分析算法判定逆变器是否发生单管开路故障,如果发生单管开路故障,计算旋转电流Id频域下的特征值,将这些特征值作为线性判别分析模型的输入值,最后由LDA模型输出逆变器工作状态编号,从而实现单管开路定位。经过MATLAB仿真验证表明,所提方法对光伏并网逆变器故障的诊断效果较好。 展开更多
关键词 并网逆变器 开路故障 频域特征 快速独立成分分析 线性判别分析
下载PDF
一种融合KPCA、FastICA及SVD的腹壁源胎儿心电 信号提取算法研究
3
作者 陈琳 杨玉瑶 吴水才 《医疗卫生装备》 CAS 2024年第7期1-7,共7页
目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singula... 目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。 展开更多
关键词 胎儿心电信号 核主成分分析 快速独立成分分析 奇异值分解 腹壁混合信号
下载PDF
基于FastICA和G-G聚类的多元时序自适应分段
4
作者 王玲 李泽中 《电子学报》 EI CAS CSCD 北大核心 2023年第5期1235-1244,共10页
现有多元时间序列的分段方法主要通过检测时序数据统计特性或形状的变化情况,并以此为依据对分段点的位置进行“硬划分”.然而,这些分段方法无法对两个分段之间的过渡区间长度进行准确估计,且普遍需要人为预先设置参数,在高维且噪声较... 现有多元时间序列的分段方法主要通过检测时序数据统计特性或形状的变化情况,并以此为依据对分段点的位置进行“硬划分”.然而,这些分段方法无法对两个分段之间的过渡区间长度进行准确估计,且普遍需要人为预先设置参数,在高维且噪声较强的情况下分段效果较差.本文针对现有分段方法存在的诸多不足,提出一种基于FastICA(Fast Independent Component Analysis)和G-G(Gath-Geva)模糊聚类的多元时序自适应分段方法 .该方法利用FastICA进行特征提取,采用DW(Durbin-Watson)指数自动选取高信噪比的主成分,并根据最小描述长度(Minimum Description Length,MDL)设计基于G-G模糊聚类的自适应分段模型,实现对于多元时间序列的“软划分”.基于多种领域的真实数据集实验结果表明:与现有主流的分段方法相比,本文方法在上述数据集上的平均F1和MAE(Mean Absolute Error)可分别提升8.4%~16.8%和3.06%~6.56%. 展开更多
关键词 多元时间序列 自适应分段 快速独立主成分分析 Gath-Geva聚类 最小描述长度
下载PDF
Efficient Fast Independent Component Analysis Algorithm with Fifth-Order Convergence
5
作者 Xuan-Sen He Tiao-Jiao Zhao Fang Wang 《Journal of Electronic Science and Technology》 CAS 2011年第3期244-249,共6页
Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by ... Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA. 展开更多
关键词 Index Terms---Blind source separation fast independent component analysis fifth-order convergence independent component analysis Newton's iterative method.
下载PDF
基于FEWT-FastICA的滚动轴承故障特征识别方法 被引量:2
6
作者 黄致远 颜丙生 刘兆亮 《机电工程》 CAS 北大核心 2023年第4期509-515,共7页
滚动轴承故障信号常包含着大量的噪声,并以调制的形式存在,其故障特征信息提取困难;同时,采用快速经验小波变换(FEWT)分解故障信号时,又存在故障特征被削弱的问题。为此,将FEWT与快速独立分量分析(FastICA)的优点相结合,在此基础上提出... 滚动轴承故障信号常包含着大量的噪声,并以调制的形式存在,其故障特征信息提取困难;同时,采用快速经验小波变换(FEWT)分解故障信号时,又存在故障特征被削弱的问题。为此,将FEWT与快速独立分量分析(FastICA)的优点相结合,在此基础上提出了一种基于FEWT-FastICA的滚动轴承故障特征识别方法。首先,利用FEWT算法对轴承故障信号进行了分解,得到了一组固有模态分量(IMF);根据峭度准则,将峭度值大于3的IMF分量重构为振动冲击信号,峭度值小于3的IMF分量重构为虚拟通道信号;然后,将重构后的信号输入FastICA算法,进行信号的降噪解混,得到信号的最佳估计信号,对最佳估计信号进行了包络谱分析,完成了对滚动轴承的故障诊断;最后,为了验证FEWT-FastICA算法的有效性,采用仿真信号及真实轴承故障信号分别进行了实验验证;同时,为了验证FEWT-FastICA算法的优越性,将其与FEWT进行了对比分析。研究结果表明:该方法能有效地提取故障特征信息,比FEWT方法所得结果的信噪比提升了1.55倍,为轴承故障诊断提供了一种新方法。 展开更多
关键词 轴承故障诊断 快速经验小波变换 快速独立分量分析 降噪解混 故障特征提取 信噪比
下载PDF
基于FastICA的无人机声学检测方法 被引量:2
7
作者 王文帅 樊宽刚 别同 《传感器与微系统》 CSCD 北大核心 2023年第2期114-117,共4页
随着无人机(UAV)的广泛应用,无人机“黑飞”等问题也随之而来。针对强干扰环境下的无人机声音识别问题,提出一种基于FastICA算法的无人机识别方法。使用FastICA算法提取出无人机声音,再对无人机声音进行识别,从而提高了无人机声音检测... 随着无人机(UAV)的广泛应用,无人机“黑飞”等问题也随之而来。针对强干扰环境下的无人机声音识别问题,提出一种基于FastICA算法的无人机识别方法。使用FastICA算法提取出无人机声音,再对无人机声音进行识别,从而提高了无人机声音检测方法的抗干扰能力。实验结果表明:所述方法在多种声源混合的情况下,仍能较好地识别无人机声音,并对不同型号的无人机均有较好地识别效果。同时考虑了识别距离对识别率的影响,结果表明:随着识别距离变大,所述算法仍能较好地识别无人机。 展开更多
关键词 无人机 盲源分离 独立成分分析 梅尔频率倒谱系数
下载PDF
基于复数FastICA的双极化干扰对消算法研究
8
作者 潘帅帅 武铮 +1 位作者 王烁 孙中传 《雷达科学与技术》 北大核心 2023年第6期701-706,共6页
为解决卫星通信中极化复用导致的交叉极化干扰问题,提出了一种基于复数快速独立成分分析方法,根据传输信道的对称性对算法作了简化处理,减少了计算量。该算法依据发送端的两个线极化信号的不相关性,在无源信号及混合矩阵的先验信息情况... 为解决卫星通信中极化复用导致的交叉极化干扰问题,提出了一种基于复数快速独立成分分析方法,根据传输信道的对称性对算法作了简化处理,减少了计算量。该算法依据发送端的两个线极化信号的不相关性,在无源信号及混合矩阵的先验信息情况下,构造负熵函数并使其最大化来分离出独立成分,进而实现交叉极化信号对消。仿真实验以正交相移键控调制信号为例,从误差向量幅度、信干噪比、交叉极化隔离度、性能指数这几个指标上进行仿真,仿真结果显示基于复数快速独立成分分析方法对解决交叉极化干扰问题具有良好的性能。 展开更多
关键词 交叉极化干扰 快速独立成分分析 卫星通信 交叉极化隔离度 误差向量幅度
下载PDF
基于FastICA-VMD的多通道脑电信号眼电伪迹自动去除方法
9
作者 李忠高 蔡艳平 +3 位作者 王涛 陈万 刘宇 王苏龙 《计算机应用》 CSCD 北大核心 2023年第S02期312-316,共5页
针对脑电(EEG)信号易受伪迹污染的问题,提出一种基于独立成分分析和变分模态分解(VMD)的眼电(EOG)伪迹自动去除方法。首先,利用快速独立成分分析(FastICA)方法将EEG分解成统计独立分量,求解各独立分量的样本熵;其次,根据样本熵阈值判筛... 针对脑电(EEG)信号易受伪迹污染的问题,提出一种基于独立成分分析和变分模态分解(VMD)的眼电(EOG)伪迹自动去除方法。首先,利用快速独立成分分析(FastICA)方法将EEG分解成统计独立分量,求解各独立分量的样本熵;其次,根据样本熵阈值判筛选包含伪迹的分量,利用变分模态分解算法分解包含眼电伪迹的分量,求解各分量的样本熵,根据样本熵阈值判别伪迹分量并将分量置零;最后,对信号进行重构,实现伪迹去除。将FastICA-VMD方法用脑电数据集进行了实验验证,实验结果表明,与现有SE-CEEMDAN(Sample Entropy-Complete Ensemble Empirical Mode Decomposition algorithm with Adaptive Noise)相比,所提方法的平均均方根误差下降了约40.5%,平均相关系数提升了约1.54%。 展开更多
关键词 脑电信号 伪迹 独立成分分析 变分模态分解 样本熵
下载PDF
Abundance quantification by independent component analysis of hyperspectral imagery for oil spill coverage calculation 被引量:2
10
作者 韩仲志 万剑华 +1 位作者 张杰 张汉德 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第4期978-986,共9页
The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills... The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills and the accuracy of estimates of their size.We consider at-sea oil spills with zonal distribution in this paper and improve the traditional independent component analysis algorithm.For each independent component we added two constraint conditions:non-negativity and constant sum.We use priority weighting by higher-order statistics,and then the spectral angle match method to overcome the order nondeterminacy.By these steps,endmembers can be extracted and abundance quantified simultaneously.To examine the coverage of a real oil spill and correct our estimate,a simulation experiment and a real experiment were designed using the algorithm described above.The result indicated that,for the simulation data,the abundance estimation error is 2.52% and minimum root mean square error of the reconstructed image is 0.030 6.We estimated the oil spill rate and area based on eight hyper-spectral remote sensing images collected by an airborne survey of Shandong Changdao in 2011.The total oil spill area was 0.224 km^2,and the oil spill rate was 22.89%.The method we demonstrate in this paper can be used for the automatic monitoring of oil spill coverage rates.It also allows the accurate estimation of the oil spill area. 展开更多
关键词 oil spill hyperspectral imagery endmember extraction abundance quantification independent component analysis ica
下载PDF
基于改进Fast-ICA的电能质量谐波检测 被引量:10
11
作者 王继 王年 +2 位作者 汪炼 沈玲 庄振华 《电力系统保护与控制》 EI CSCD 北大核心 2010年第18期126-130,共5页
独立分量分析是利用信号的高阶统计量快速准确地实现信号分离和恢复。提出一种改进快速分离算法检测电能质量谐波的方法。在介绍了快速分离算法基本原理的基础上对牛顿迭代法进行了改进,减少了迭代次数,提高了收敛速度;依据负熵极大的... 独立分量分析是利用信号的高阶统计量快速准确地实现信号分离和恢复。提出一种改进快速分离算法检测电能质量谐波的方法。在介绍了快速分离算法基本原理的基础上对牛顿迭代法进行了改进,减少了迭代次数,提高了收敛速度;依据负熵极大的独立性准则实现谐波信号的盲分离,再进行幅值修正以实现对真实信号的估计;对分离修正后的信号进行FFT分析,得到幅值和频率,进而实现对谐波的检测。仿真实验结果表明了该算法在检测精度和运行效率上都有所提高。 展开更多
关键词 盲源分离 独立分量分析 fast-ica 电能质量 谐波
下载PDF
Two Dimensional Spatial Independent Component Analysis and Its Application in fMRI Data Process
12
作者 陈华富 尧德中 《Journal of Electronic Science and Technology of China》 2005年第3期231-233,237,共4页
One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is propo... One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image deta and one-dimensional (l-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection. 展开更多
关键词 independent component analysis image processing composite 2-D ica algorithm functional magnetic resonance imaging
下载PDF
基于改进FastICA算法的入侵检测样本数据优化方法 被引量:14
13
作者 杜晔 张亚丹 +1 位作者 黎妹红 张大伟 《通信学报》 EI CSCD 北大核心 2016年第1期42-48,共7页
为更好实现对入侵检测样本数据的优化处理,提出了一种改进的快速独立成分分析(Fast ICA)算法,采用基于加权相关系数进行白化处理以减少信息损失,并优化牛顿迭代法使其满足三阶收敛。对算法进行了细致描述,分析了算法的时间复杂度。实验... 为更好实现对入侵检测样本数据的优化处理,提出了一种改进的快速独立成分分析(Fast ICA)算法,采用基于加权相关系数进行白化处理以减少信息损失,并优化牛顿迭代法使其满足三阶收敛。对算法进行了细致描述,分析了算法的时间复杂度。实验结果表明,该方法可有效减少数据信息损失,具有迭代次数少、收敛速度快等优点,可有效提高入侵检测样本数据的优化效率。 展开更多
关键词 入侵检测 快速独立成分分析 数据优化 牛顿迭代法
下载PDF
基于Fast ICA和改进LSSVM的短期风速预测 被引量:5
14
作者 孙斌 姚海涛 +2 位作者 李田 刘袖 刘博 《电力系统及其自动化学报》 CSCD 北大核心 2014年第1期22-27,共6页
对风速的准确预测能有效减轻风电场对整个电网的不利影响,同时能提高风电场在电力市场中的竞争能力。首先提出一种基于快速独立分量分析算法和改进最小二乘支持向量机的风速预测模型,对运用fast ICA算法对风速时间序列进行多层分解,得... 对风速的准确预测能有效减轻风电场对整个电网的不利影响,同时能提高风电场在电力市场中的竞争能力。首先提出一种基于快速独立分量分析算法和改进最小二乘支持向量机的风速预测模型,对运用fast ICA算法对风速时间序列进行多层分解,得到一系列的独立分量;然后运用改进最小二乘支持向量机模型对分解后的各独立分量风速进行预测;最后对各预测结果进行叠加作为最终的预测风速。算例结果表明,该预测模型能准确进行短期风速的预测。 展开更多
关键词 风电场 风速预测 fast ica算法 最小二乘支持向量机
下载PDF
Fast ICA盲分离算法在雷达抗主瓣干扰中的应用研究 被引量:10
15
作者 王文涛 周青松 +1 位作者 刘兴华 李磊 《现代雷达》 CSCD 北大核心 2015年第12期40-44,48,共6页
压制干扰信号从主瓣进入雷达天线,会严重影响雷达的性能,通常的副瓣抗干扰技术难以奏效。文中首先给出了Fast ICA应用于雷达抗主瓣干扰的信号模型;在高信噪比的均匀噪声环境中,利用基于寻找峭度的局部极值点的Fast ICA盲分离算法分离接... 压制干扰信号从主瓣进入雷达天线,会严重影响雷达的性能,通常的副瓣抗干扰技术难以奏效。文中首先给出了Fast ICA应用于雷达抗主瓣干扰的信号模型;在高信噪比的均匀噪声环境中,利用基于寻找峭度的局部极值点的Fast ICA盲分离算法分离接收到的主瓣干扰混合信号,通过脉压找出目标信号。仿真验证了算法用于抗主瓣干扰的有效性,该算法具有良好的抗干扰性能,在分离效率上具有较明显的优势。 展开更多
关键词 抗主瓣干扰 峭度 fastica盲分离算法 脉压
下载PDF
基于FastICA-MP算法的次同步振荡模态参数辨识 被引量:12
16
作者 赵兰明 李宽 +2 位作者 张友泉 郑帅 徐大鹏 《电力系统保护与控制》 EI CSCD 北大核心 2018年第8期37-42,共6页
WAMS在电力系统中的应用越来越广,使得电力系统次同步振荡模态参数在线辨识成为可能。但系统中存在大量电力电子设备,造成了WAMS采样信号中存在较强的噪声干扰,影响了振荡模态参数辨识的准确性。鉴于快速独立分量分析可以实现噪声信号... WAMS在电力系统中的应用越来越广,使得电力系统次同步振荡模态参数在线辨识成为可能。但系统中存在大量电力电子设备,造成了WAMS采样信号中存在较强的噪声干扰,影响了振荡模态参数辨识的准确性。鉴于快速独立分量分析可以实现噪声信号与原始信号的有效分离,提出首先通过快速独立分量分析对采样信号进行预处理,然后将滤噪后的信号通过矩阵束算法进行辨识得到振荡模态参数。通过此方法可以进一步提高矩阵束的辨识准确度。通过理想仿真算例和国内某特高压直流输电系统作为实际仿真算例进行分析。仿真结果表明,快速独立分量分析可有效分离噪声信号,提高了矩阵束辨识准确性,为后续阻尼控制器的设计奠定了基础。 展开更多
关键词 次同步振荡 快速独立分量分析 矩阵束算法 特高压直流输电
下载PDF
FastICA和RobustICA算法在盲源分离中的性能分析 被引量:18
17
作者 吴微 彭华 张帆 《计算机应用研究》 CSCD 北大核心 2014年第1期95-98,119,共5页
首先简单介绍了FastICA和RobustICA这两种目前最为常用的盲源分离算法,并对这算法的目标函数以及优化算法进行了分析研究,进一步对这两种算法的稳健性及算法复杂度等方面的性能进行分析比较。总的来看,RobustICA算法的综合性能要优于Fas... 首先简单介绍了FastICA和RobustICA这两种目前最为常用的盲源分离算法,并对这算法的目标函数以及优化算法进行了分析研究,进一步对这两种算法的稳健性及算法复杂度等方面的性能进行分析比较。总的来看,RobustICA算法的综合性能要优于FastICA算法。 展开更多
关键词 独立分量分析 盲源分离 fastica Robustica 峭度 负熵
下载PDF
FastICA算法在低信噪比爆破振动信号信噪分离中的应用研究 被引量:12
18
作者 路亮 龙源 +2 位作者 钟明寿 谢全民 李兴华 《振动与冲击》 EI CSCD 北大核心 2012年第17期33-37,共5页
传统信噪分离方法对低信噪比爆破振动信号的细节提取能力变弱或近乎失效,因此,提出应用快速独立分量分析(FastICA)方法对信号中的独立分量进行非高斯性度量以完成含噪信号的信噪分离。结合数值仿真算例及实测信号分离试验,验证了FastIC... 传统信噪分离方法对低信噪比爆破振动信号的细节提取能力变弱或近乎失效,因此,提出应用快速独立分量分析(FastICA)方法对信号中的独立分量进行非高斯性度量以完成含噪信号的信噪分离。结合数值仿真算例及实测信号分离试验,验证了FastICA用于爆破振动信号信噪分离的有效性,结果表明,FastICA可以准确地从信噪较低的含噪信号中,分离出贴合源信号的逼近信号,从而为将FastICA引入到爆破振动信号分析领域,实现爆破振动特征的快速提取提供了借鉴。 展开更多
关键词 低信噪比 爆破振动 独立分量分析 信噪分离 分离性能
下载PDF
一种改进的FastICA算法及其应用 被引量:20
19
作者 郭武 朱长仁 王润生 《计算机应用》 CSCD 北大核心 2008年第4期960-962,共3页
独立分量分析是基于信号高阶统计量的信号分析方法,它可以找到隐含在数据中的独立分量,已经广泛应用到语音信号处理、图像处理及信息通信等方面。目前应用较多的快速独立分量分析(FastICA)利用了牛顿迭代法原理,具有较快的收敛速度,但... 独立分量分析是基于信号高阶统计量的信号分析方法,它可以找到隐含在数据中的独立分量,已经广泛应用到语音信号处理、图像处理及信息通信等方面。目前应用较多的快速独立分量分析(FastICA)利用了牛顿迭代法原理,具有较快的收敛速度,但对初始值的选择比较敏感。为克服其缺点,改进其优化学习算法,在牛顿迭代方向增加一维搜索,使改进后的算法的收敛性不依赖于初始值的选择。将改进的FastICA算法应用到运动目标检测中,取得稳定性较强的结果。 展开更多
关键词 独立分量分析 快速独立分量分析 运动目标检测
下载PDF
改进的FastICA算法研究 被引量:9
20
作者 张杰 刘辉 欧伦伟 《计算机工程与应用》 CSCD 2014年第6期210-212,218,共4页
独立分量分析是目前盲源分离算法中最常用的一种方法,其中快速独立分量分析(FastICA)以其收敛速度快而被广泛应用,但FastICA对初始值的选择比较敏感,而且在使用牛顿迭代法时,每迭代一步都需要计算一次函数值和一次导数值,当函数比较复杂... 独立分量分析是目前盲源分离算法中最常用的一种方法,其中快速独立分量分析(FastICA)以其收敛速度快而被广泛应用,但FastICA对初始值的选择比较敏感,而且在使用牛顿迭代法时,每迭代一步都需要计算一次函数值和一次导数值,当函数比较复杂时,计算它的导数值往往不方便,用单点弦截法进行迭代,将最速下降法与单点弦截法结合,在保证分离效果的同时使FastICA的迭代次数减少,同时使计算式更加简洁,而且减小了对初始值的敏感性,仿真实验验证了其有效性。 展开更多
关键词 fast独立分量分析(ica) 牛顿法 弦截法 最速下降法 负熵
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部