The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place i...The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place in physical systems over time and effect substantially.This study has made ozone depletion identification through classification using Faster Region-Based Convolutional Neural Network(F-RCNN).The main advantage of F-RCNN is to accumulate the bounding boxes on images to differentiate the depleted and non-depleted regions.Furthermore,image classification’s primary goal is to accurately predict each minutely varied case’s targeted classes in the dataset based on ozone saturation.The permanent changes in climate are of serious concern.The leading causes beyond these destructive variations are ozone layer depletion,greenhouse gas release,deforestation,pollution,water resources contamination,and UV radiation.This research focuses on the prediction by identifying the ozone layer depletion because it causes many health issues,e.g.,skin cancer,damage to marine life,crops damage,and impacts on living being’s immune systems.We have tried to classify the ozone images dataset into two major classes,depleted and non-depleted regions,to extract the required persuading features through F-RCNN.Furthermore,CNN has been used for feature extraction in the existing literature,and those extricated diverse RoIs are passed on to the CNN for grouping purposes.It is difficult to manage and differentiate those RoIs after grouping that negatively affects the gathered results.The classification outcomes through F-RCNN approach are proficient and demonstrate that general accuracy lies between 91%to 93%in identifying climate variation through ozone concentration classification,whether the region in the image under consideration is depleted or non-depleted.Our proposed model presented 93%accuracy,and it outperforms the prevailing techniques.展开更多
Background:Distinguishing between primary clear cell carcinoma of the liver(PCCCL)and common hepatocellular carcinoma(CHCC)through traditional inspection methods before the operation is difficult.This study aimed to e...Background:Distinguishing between primary clear cell carcinoma of the liver(PCCCL)and common hepatocellular carcinoma(CHCC)through traditional inspection methods before the operation is difficult.This study aimed to establish a Faster region-based convolutional neural network(RCNN)model for the accurate differential diagnosis of PCCCL and CHCC.Methods:In this study,we collected the data of 62 patients with PCCCL and 1079 patients with CHCC in Beijing YouAn Hospital from June 2012 to May 2020.A total of 109 patients with CHCC and 42 patients with PCCCL were randomly divided into the training validation set and the test set in a ratio of 4:1.The Faster RCNN was used for deep learning of patients’data in the training validation set,and established a convolutional neural network model to distinguish PCCCL and CHCC.The accuracy,average precision,and the recall of the model for diagnosing PCCCL and CHCC were used to evaluate the detection performance of the Faster RCNN algorithm.Results:A total of 4392 images of 121 patients(1032 images of 33 patients with PCCCL and 3360 images of 88 patients with CHCC)were uesd in test set for deep learning and establishing the model,and 1072 images of 30 patients(320 images of nine patients with PCCCL and 752 images of 21 patients with CHCC)were used to test the model.The accuracy of the model for accurately diagnosing PCCCL and CHCC was 0.962(95%confidence interval[CI]:0.931-0.992).The average precision of the model for diagnosing PCCCL was 0.908(95%CI:0.823-0.993)and that for diagnosing CHCC was 0.907(95%CI:0.823-0.993).The recall of the model for diagnosing PCCCL was 0.951(95%CI:0.916-0.985)and that for diagnosing CHCC was 0.960(95%CI:0.854-0.962).The time to make a diagnosis using the model took an average of 4 s for each patient.Conclusion:The Faster RCNN model can accurately distinguish PCCCL and CHCC.This model could be important for clinicians to make appropriate treatment plans for patients with PCCCL or CHCC.展开更多
Background:Early diagnosis and accurate staging are important to improve the cure rate and prognosis for pancreatic cancer.This study was performed to develop an automatic and accurate imaging processing technique sys...Background:Early diagnosis and accurate staging are important to improve the cure rate and prognosis for pancreatic cancer.This study was performed to develop an automatic and accurate imaging processing technique system,allowing this system to read computed tomography(CT)images correctly and make diagnosis of pancreatic cancer faster.Methods:The establishment of the artificial intelligence(AI)system for pancreatic cancer diagnosis based on sequential contrastenhanced CT images were composed of two processes:training and verification.During training process,our study used all 4385 CT images from 238 pancreatic cancer patients in the database as the training data set.Additionally,we used VGG16,which was pretrained in ImageNet and contained 13 convolutional layers and three fully connected layers,to initialize the feature extraction network.In the verification experiment,we used sequential clinical CT images from 238 pancreatic cancer patients as our experimental data and input these data into the faster region-based convolution network(Faster R-CNN)model that had completed training.Totally,1699 images from 100 pancreatic cancer patients were included for clinical verification.Results:A total of 338 patients with pancreatic cancer were included in the study.The clinical characteristics(sex,age,tumor location,differentiation grade,and tumor-node-metastasis stage)between the two training and verification groups were insignificant.The mean average precision was 0.7664,indicating a good training ejffect of the Faster R-CNN.Sequential contrastenhanced CT images of 100 pancreatic cancer patients were used for clinical verification.The area under the receiver operating characteristic curve calculated according to the trapezoidal rule was 0.9632.It took approximately 0.2 s for the Faster R-CNN AI to automatically process one CT image,which is much faster than the time required for diagnosis by an imaging specialist.Conclusions:Faster R-CNN AI is an effective and objective method with high accuracy for the diagnosis of pancreatic cancer.展开更多
相比于高效视频编码(high efficiency video coding,HEVC)标准,新一代编码标准多功能视频编码(versatile video coding,VVC)引入了很多新的技术,其中包括四叉树(quadtree,QT)和多类型树(multi-type tree,MTT)划分,MTT划分由HEVC中的QT...相比于高效视频编码(high efficiency video coding,HEVC)标准,新一代编码标准多功能视频编码(versatile video coding,VVC)引入了很多新的技术,其中包括四叉树(quadtree,QT)和多类型树(multi-type tree,MTT)划分,MTT划分由HEVC中的QT划分延伸而来。新划分方法提高了压缩效率,但导致编码时间急剧增加。为了降低编码复杂度,提出了一种结合深度学习方法和MTT方向早期判决的快速帧内编码算法。首先使用轻量级的卷积神经网络(convolutional neural network,CNN)对QT和部分MTT进行预测划分,其余MTT则采用提前预测MTT划分方向的方法作进一步的优化。实验结果表明,所提方法能够大幅降低编码复杂度,相比于原始编码器的编码时间减少了74.3%,且只有3.3%的码率损失,性能优于对比的方法。展开更多
This paper proposes a solution to localization and classification of rice grains in an image.All existing related works rely on conventional based machine learning approaches.However,those techniques do not do well fo...This paper proposes a solution to localization and classification of rice grains in an image.All existing related works rely on conventional based machine learning approaches.However,those techniques do not do well for the problem designed in this paper,due to the high similarities between different types of rice grains.The deep learning based solution is developed in the proposed solution.It contains pre-processing steps of data annotation using the watershed algorithm,auto-alignment using the major axis orientation,and image enhancement using the contrast-limited adaptive histogram equalization(CLAHE)technique.Then,the mask region-based convolutional neural networks(R-CNN)is trained to localize and classify rice grains in an input image.The performance is enhanced by using the transfer learning and the dropout regularization for overfitting prevention.The proposed method is validated using many scenarios of experiments,reported in the forms of mean average precision(mAP)and a confusion matrix.It achieves above 80%mAP for main scenarios in the experiments.It is also shown to perform outstanding,when compared to human experts.展开更多
In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convo...In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images.展开更多
In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based ...In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based on Faster region-ased convolutional neural network(Faster R-CNN).First,a dual camera image acquisition system is established.One industrial camera placed at a high position is responsible for collecting the whole image of the workpiece,and the suspected screw hole position on the workpiece can be preliminarily selected by Hough transform detection algorithm.Then,the other industrial camera is responsible for collecting the local images of the suspected screw holes that have been detected by Hough transform one by one.After that,ResNet50-based Faster R-CNN object detection model is trained on the self-built screw hole data set.Finally,the local image of the threaded hole is input into the trained Faster R-CNN object detection model for further identification and location.The experimental results show that the proposed method can effectively avoid small object detection of threaded holes,and compared with the method that only uses Hough transform or Faster RCNN object detection alone,it has high recognition and positioning accuracy.展开更多
文摘The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place in physical systems over time and effect substantially.This study has made ozone depletion identification through classification using Faster Region-Based Convolutional Neural Network(F-RCNN).The main advantage of F-RCNN is to accumulate the bounding boxes on images to differentiate the depleted and non-depleted regions.Furthermore,image classification’s primary goal is to accurately predict each minutely varied case’s targeted classes in the dataset based on ozone saturation.The permanent changes in climate are of serious concern.The leading causes beyond these destructive variations are ozone layer depletion,greenhouse gas release,deforestation,pollution,water resources contamination,and UV radiation.This research focuses on the prediction by identifying the ozone layer depletion because it causes many health issues,e.g.,skin cancer,damage to marine life,crops damage,and impacts on living being’s immune systems.We have tried to classify the ozone images dataset into two major classes,depleted and non-depleted regions,to extract the required persuading features through F-RCNN.Furthermore,CNN has been used for feature extraction in the existing literature,and those extricated diverse RoIs are passed on to the CNN for grouping purposes.It is difficult to manage and differentiate those RoIs after grouping that negatively affects the gathered results.The classification outcomes through F-RCNN approach are proficient and demonstrate that general accuracy lies between 91%to 93%in identifying climate variation through ozone concentration classification,whether the region in the image under consideration is depleted or non-depleted.Our proposed model presented 93%accuracy,and it outperforms the prevailing techniques.
文摘Background:Distinguishing between primary clear cell carcinoma of the liver(PCCCL)and common hepatocellular carcinoma(CHCC)through traditional inspection methods before the operation is difficult.This study aimed to establish a Faster region-based convolutional neural network(RCNN)model for the accurate differential diagnosis of PCCCL and CHCC.Methods:In this study,we collected the data of 62 patients with PCCCL and 1079 patients with CHCC in Beijing YouAn Hospital from June 2012 to May 2020.A total of 109 patients with CHCC and 42 patients with PCCCL were randomly divided into the training validation set and the test set in a ratio of 4:1.The Faster RCNN was used for deep learning of patients’data in the training validation set,and established a convolutional neural network model to distinguish PCCCL and CHCC.The accuracy,average precision,and the recall of the model for diagnosing PCCCL and CHCC were used to evaluate the detection performance of the Faster RCNN algorithm.Results:A total of 4392 images of 121 patients(1032 images of 33 patients with PCCCL and 3360 images of 88 patients with CHCC)were uesd in test set for deep learning and establishing the model,and 1072 images of 30 patients(320 images of nine patients with PCCCL and 752 images of 21 patients with CHCC)were used to test the model.The accuracy of the model for accurately diagnosing PCCCL and CHCC was 0.962(95%confidence interval[CI]:0.931-0.992).The average precision of the model for diagnosing PCCCL was 0.908(95%CI:0.823-0.993)and that for diagnosing CHCC was 0.907(95%CI:0.823-0.993).The recall of the model for diagnosing PCCCL was 0.951(95%CI:0.916-0.985)and that for diagnosing CHCC was 0.960(95%CI:0.854-0.962).The time to make a diagnosis using the model took an average of 4 s for each patient.Conclusion:The Faster RCNN model can accurately distinguish PCCCL and CHCC.This model could be important for clinicians to make appropriate treatment plans for patients with PCCCL or CHCC.
基金This work was supported by grants from the National Natural Science Foundation of China(No.81802888)the Key Research and Development Project of Shandong Province(No.2018GSF118206 and No.2018GSF118088).
文摘Background:Early diagnosis and accurate staging are important to improve the cure rate and prognosis for pancreatic cancer.This study was performed to develop an automatic and accurate imaging processing technique system,allowing this system to read computed tomography(CT)images correctly and make diagnosis of pancreatic cancer faster.Methods:The establishment of the artificial intelligence(AI)system for pancreatic cancer diagnosis based on sequential contrastenhanced CT images were composed of two processes:training and verification.During training process,our study used all 4385 CT images from 238 pancreatic cancer patients in the database as the training data set.Additionally,we used VGG16,which was pretrained in ImageNet and contained 13 convolutional layers and three fully connected layers,to initialize the feature extraction network.In the verification experiment,we used sequential clinical CT images from 238 pancreatic cancer patients as our experimental data and input these data into the faster region-based convolution network(Faster R-CNN)model that had completed training.Totally,1699 images from 100 pancreatic cancer patients were included for clinical verification.Results:A total of 338 patients with pancreatic cancer were included in the study.The clinical characteristics(sex,age,tumor location,differentiation grade,and tumor-node-metastasis stage)between the two training and verification groups were insignificant.The mean average precision was 0.7664,indicating a good training ejffect of the Faster R-CNN.Sequential contrastenhanced CT images of 100 pancreatic cancer patients were used for clinical verification.The area under the receiver operating characteristic curve calculated according to the trapezoidal rule was 0.9632.It took approximately 0.2 s for the Faster R-CNN AI to automatically process one CT image,which is much faster than the time required for diagnosis by an imaging specialist.Conclusions:Faster R-CNN AI is an effective and objective method with high accuracy for the diagnosis of pancreatic cancer.
文摘相比于高效视频编码(high efficiency video coding,HEVC)标准,新一代编码标准多功能视频编码(versatile video coding,VVC)引入了很多新的技术,其中包括四叉树(quadtree,QT)和多类型树(multi-type tree,MTT)划分,MTT划分由HEVC中的QT划分延伸而来。新划分方法提高了压缩效率,但导致编码时间急剧增加。为了降低编码复杂度,提出了一种结合深度学习方法和MTT方向早期判决的快速帧内编码算法。首先使用轻量级的卷积神经网络(convolutional neural network,CNN)对QT和部分MTT进行预测划分,其余MTT则采用提前预测MTT划分方向的方法作进一步的优化。实验结果表明,所提方法能够大幅降低编码复杂度,相比于原始编码器的编码时间减少了74.3%,且只有3.3%的码率损失,性能优于对比的方法。
文摘This paper proposes a solution to localization and classification of rice grains in an image.All existing related works rely on conventional based machine learning approaches.However,those techniques do not do well for the problem designed in this paper,due to the high similarities between different types of rice grains.The deep learning based solution is developed in the proposed solution.It contains pre-processing steps of data annotation using the watershed algorithm,auto-alignment using the major axis orientation,and image enhancement using the contrast-limited adaptive histogram equalization(CLAHE)technique.Then,the mask region-based convolutional neural networks(R-CNN)is trained to localize and classify rice grains in an input image.The performance is enhanced by using the transfer learning and the dropout regularization for overfitting prevention.The proposed method is validated using many scenarios of experiments,reported in the forms of mean average precision(mAP)and a confusion matrix.It achieves above 80%mAP for main scenarios in the experiments.It is also shown to perform outstanding,when compared to human experts.
基金National Defense Pre-research Fund Project(No.KMGY318002531)。
文摘In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images.
文摘In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based on Faster region-ased convolutional neural network(Faster R-CNN).First,a dual camera image acquisition system is established.One industrial camera placed at a high position is responsible for collecting the whole image of the workpiece,and the suspected screw hole position on the workpiece can be preliminarily selected by Hough transform detection algorithm.Then,the other industrial camera is responsible for collecting the local images of the suspected screw holes that have been detected by Hough transform one by one.After that,ResNet50-based Faster R-CNN object detection model is trained on the self-built screw hole data set.Finally,the local image of the threaded hole is input into the trained Faster R-CNN object detection model for further identification and location.The experimental results show that the proposed method can effectively avoid small object detection of threaded holes,and compared with the method that only uses Hough transform or Faster RCNN object detection alone,it has high recognition and positioning accuracy.