激光点云常规匹配算法是迭代最近点(Iterative Closest Point, ICP)算法,但其收敛速度慢、鲁棒性差,因此,提出一种融合多种优化算法的激光点云高效ICP配准方法。首先对点云体素滤波降采样,通过ISS算子提取关键点,采用快速点特征直方图(F...激光点云常规匹配算法是迭代最近点(Iterative Closest Point, ICP)算法,但其收敛速度慢、鲁棒性差,因此,提出一种融合多种优化算法的激光点云高效ICP配准方法。首先对点云体素滤波降采样,通过ISS算子提取关键点,采用快速点特征直方图(Fast Point Feature Histograms, FPFH)提取关键点特征,嵌入多核多线程并行处理模式(OpenMP)提高特征提取速度;然后基于提取的FPFH特征,使用采样一致性初始配准算法(Sample Consensus Initial Alignment, SAC-IA)进行相似特征点粗配准,获取点云集间的初始旋转平移变换矩阵;最后采用ICP算法进行精配准,同时采用最优节点优先(Best Bin First, BBF)优化K-D tree近邻搜索法来加速对应关系点对的搜索,并设定动态阈值消除错误对应点对,提高配准快速性和准确性。对两个实例的配准点云进行了实验验证,结果表明,提出的优化配准算法具有明显速度优势和精度优势。展开更多
文摘针对油田遥感图像在灰度有明显差异的情况下,联合位置、尺度和方向的尺度不变特征变换(PSO-SIFT)算法很难为其找到足够多的正确对应关系,且花费时间较长的问题,提出一种基于改进PSO-SIFT算法的图像匹配算法.首先采用“回”字型分块思想构建特征描述符,降低特征描述子的维度;然后使用基于全局运动建模的双边函数(BF)算法与快速样本共识(FSC)算法相结合的匹配策略,对所得的匹配对进行误匹配剔除,以增加正确匹配的数量;最后将该算法与4种同类算法及原PSO-SIFT算法进行对比.实验结果表明,该算法比同类算法精度更高,与原算法相比不仅保证了图像匹配的精度,正确匹配对数量也增加了约3倍,且匹配时间约缩短20 s.