This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then use...In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then uses half-way-skip and half-way-stop technique to determine whether to employ two hexagonal search patterns(HSPs) subsequently. The AMCSP can be used to find small motion vectors efficiently while the HSPs can be used to find large ones accurately to ensure prediction quality. Simulation results showed that our proposed AMCHS achieves faster search speed,and provides better distortion performance than other popular fast search algorithms,such as CDS and CDHS.展开更多
Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Perfo...Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Performance evaluation through the Receiver Operating Characteristics (ROCs) are presented and compared from the viewpoint of probability of detection (Pd), probability of false alarm (Pfa) by computer simulation. When the sinusoid frequency does not correspond to one of the spectral bins (mid-bin frequency situation), the performance of all the mentioned detectors degrades. This research investigates the development of a bearing estimation method using Fast Orthogonal Search (FOS) to enhance spectral estimation which, improves both target detection and bearing estimation in case of low SNR inputs.展开更多
单脉冲搜索作为脉冲星探测的有力工具,在探测旋转射电暂现源以及快速射电暴中扮演着重要角色。为了从海量的射电巡天数据中快速筛选出最有价值的单脉冲搜索候选体,候选体识别已经从早期启发式阈值判断发展到基于机器学习自动识别。对于F...单脉冲搜索作为脉冲星探测的有力工具,在探测旋转射电暂现源以及快速射电暴中扮演着重要角色。为了从海量的射电巡天数据中快速筛选出最有价值的单脉冲搜索候选体,候选体识别已经从早期启发式阈值判断发展到基于机器学习自动识别。对于FAST观测,研究了基于机器学习的单脉冲搜索候选体识别应用到CRAFTS(the commensal radio astronomy FAST survey)超宽带脉冲星数据的性能表现。在评估过程中,使用单脉冲事件组识别(SPEGID)和单脉冲搜索器(SPS)两类自动识别方法,通过7种不同机器学习分类器对CRAFTS基准数据集产生的单脉冲搜索候选体进行自动识别;作为对比,也使用了启发式阈值判断的方法(RRATtrap和Clusterrank)。结果表明,SPEGID具有最好的性能表现(最高的F1-score值95.1%、次高的召回率95.4%、最低的假阳性率4.7%),SPS具有最快的筛选速度(平均每小时筛选4010个候选体)。通过对比分析结果,探讨了如何基于FAST观测数据开展高效的单脉冲搜索候选体识别。展开更多
研究分析500m口径球冠状巨型射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,简称FAST)主动反射面结构故障诊断问题。深入分析结构特点,论证FAST索网结构是一个准静力结构以及结构故障的局域性,并结合FAST望远镜工...研究分析500m口径球冠状巨型射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,简称FAST)主动反射面结构故障诊断问题。深入分析结构特点,论证FAST索网结构是一个准静力结构以及结构故障的局域性,并结合FAST望远镜工作特点,确定结构故障的基本模式。提出基于索应力监测和变位节点坐标监测的故障诊断方法:监测结构"热点应力",针对基准态和工作态,设置不同判定准则,直接诊断结构关键部位;监测索网变位节点坐标,计算其与理论值的偏差序列,针对客观存在、无法消除的有限元理论模型误差和测量误差,提出采用Walsh非参数检验方法并结合节点不平衡力的快速计算,实时检验是否存在故障以及可能的故障点区域,实现望远镜工作的安全实时预警,提出采用模式搜索算法,以故障点区域单元为诊断对象,以实际监测和理论计算的结构响应趋于一致为目标,诊断结构故障的具体类型和程度。数值模拟计算结果表明上述结构故障诊断方法适用于FAST主动反射面结构,是有效且切实可行的方法。展开更多
目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clu...目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clustering by Fast Search and Find of Density Peaks Optimizing Fuzzy C-Means,DPC-FCM)结合的无监督诊断方法。方法 首先,将多尺度排列熵与峭度相结合的综合系数作为适应度函数,对VMD算法的惩罚因子alpha和模态个数K进行参数寻优,提取分解后本征模态函数(Intrinsic Mode Function,IMF)的平均样本熵与平均模糊熵,并输入至聚类算法中。其次,提出利用密度峰值聚类算法确定FCM的初始聚类中心,降低聚类结果的随机性。结果 将提出的无监督故障诊断模型应用到滚动轴承试验信号中,实现了准确的故障诊断。结论 AVMD在故障提取方面具有优越性,同时DPC算法可以有效提高FCM算法无监督聚类的准确性,二者结合可以有效实现旋转机械故障的智能分类。展开更多
为进一步提升网络入侵检测效果,提出一种融合FAST特征选择与自适应二进制量子引力搜索支持向量机的(FAST-ABQGSA-SVM)网络入侵检测算法。利用FAST算法过滤掉原始特征集中冗余无关的特征形成候选特征子集,基于组合优化策略采用自适应二...为进一步提升网络入侵检测效果,提出一种融合FAST特征选择与自适应二进制量子引力搜索支持向量机的(FAST-ABQGSA-SVM)网络入侵检测算法。利用FAST算法过滤掉原始特征集中冗余无关的特征形成候选特征子集,基于组合优化策略采用自适应二进制量子引力搜索算法对候选特征子集与SVM分类器参数进行组合优化。在ABQGSA反复学习寻优过程中,采取动态自适应波动式调整策略更新量子旋转角以平衡算法全局搜索能力和局部搜索能力;同时为提升算法的自适应变异能力,设计与进化程度及个体适应度值相关的自适应变异概率,当种群进化出现停滞时及时引入量子位离散交叉操作帮助种群摆脱局部极值。通过KDD CUP 99仿真实验表明,所提出的FAST-ABQGSA-SVM算法较其他同类型检测算法具有更好的鲁棒性、学习精度以及检测效果。展开更多
Motion estimation is an important and intensive task in video coding applications. Since the complexity of integer pixel search has been greatly reduced by the numerous fast ME algorithm, the computation overhead requ...Motion estimation is an important and intensive task in video coding applications. Since the complexity of integer pixel search has been greatly reduced by the numerous fast ME algorithm, the computation overhead required by fractional pixel ME has become relatively significant. To reduce the complexity of the fractional pixel ME algorithm, a directionality-based fractional pixel ME algorithm is proposed. The proposed algorithm efficiently explores the neighborhood positions which with high probability to be the best matching around the minimum one and skips over other unlikely ones. Thus, the proposed algorithm can complete the search by examining only 3 points on appropriate condition instead of 17 search points in the search algorithm of reference software. The simulation results show that the proposed algorithm successfully optimizes the fractional-pixel motion search on both half and quarter-pixel accuracy and improves the processing speed with low PSNR penalty.展开更多
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then uses half-way-skip and half-way-stop technique to determine whether to employ two hexagonal search patterns(HSPs) subsequently. The AMCSP can be used to find small motion vectors efficiently while the HSPs can be used to find large ones accurately to ensure prediction quality. Simulation results showed that our proposed AMCHS achieves faster search speed,and provides better distortion performance than other popular fast search algorithms,such as CDS and CDHS.
文摘Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Performance evaluation through the Receiver Operating Characteristics (ROCs) are presented and compared from the viewpoint of probability of detection (Pd), probability of false alarm (Pfa) by computer simulation. When the sinusoid frequency does not correspond to one of the spectral bins (mid-bin frequency situation), the performance of all the mentioned detectors degrades. This research investigates the development of a bearing estimation method using Fast Orthogonal Search (FOS) to enhance spectral estimation which, improves both target detection and bearing estimation in case of low SNR inputs.
文摘单脉冲搜索作为脉冲星探测的有力工具,在探测旋转射电暂现源以及快速射电暴中扮演着重要角色。为了从海量的射电巡天数据中快速筛选出最有价值的单脉冲搜索候选体,候选体识别已经从早期启发式阈值判断发展到基于机器学习自动识别。对于FAST观测,研究了基于机器学习的单脉冲搜索候选体识别应用到CRAFTS(the commensal radio astronomy FAST survey)超宽带脉冲星数据的性能表现。在评估过程中,使用单脉冲事件组识别(SPEGID)和单脉冲搜索器(SPS)两类自动识别方法,通过7种不同机器学习分类器对CRAFTS基准数据集产生的单脉冲搜索候选体进行自动识别;作为对比,也使用了启发式阈值判断的方法(RRATtrap和Clusterrank)。结果表明,SPEGID具有最好的性能表现(最高的F1-score值95.1%、次高的召回率95.4%、最低的假阳性率4.7%),SPS具有最快的筛选速度(平均每小时筛选4010个候选体)。通过对比分析结果,探讨了如何基于FAST观测数据开展高效的单脉冲搜索候选体识别。
文摘研究分析500m口径球冠状巨型射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,简称FAST)主动反射面结构故障诊断问题。深入分析结构特点,论证FAST索网结构是一个准静力结构以及结构故障的局域性,并结合FAST望远镜工作特点,确定结构故障的基本模式。提出基于索应力监测和变位节点坐标监测的故障诊断方法:监测结构"热点应力",针对基准态和工作态,设置不同判定准则,直接诊断结构关键部位;监测索网变位节点坐标,计算其与理论值的偏差序列,针对客观存在、无法消除的有限元理论模型误差和测量误差,提出采用Walsh非参数检验方法并结合节点不平衡力的快速计算,实时检验是否存在故障以及可能的故障点区域,实现望远镜工作的安全实时预警,提出采用模式搜索算法,以故障点区域单元为诊断对象,以实际监测和理论计算的结构响应趋于一致为目标,诊断结构故障的具体类型和程度。数值模拟计算结果表明上述结构故障诊断方法适用于FAST主动反射面结构,是有效且切实可行的方法。
文摘目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clustering by Fast Search and Find of Density Peaks Optimizing Fuzzy C-Means,DPC-FCM)结合的无监督诊断方法。方法 首先,将多尺度排列熵与峭度相结合的综合系数作为适应度函数,对VMD算法的惩罚因子alpha和模态个数K进行参数寻优,提取分解后本征模态函数(Intrinsic Mode Function,IMF)的平均样本熵与平均模糊熵,并输入至聚类算法中。其次,提出利用密度峰值聚类算法确定FCM的初始聚类中心,降低聚类结果的随机性。结果 将提出的无监督故障诊断模型应用到滚动轴承试验信号中,实现了准确的故障诊断。结论 AVMD在故障提取方面具有优越性,同时DPC算法可以有效提高FCM算法无监督聚类的准确性,二者结合可以有效实现旋转机械故障的智能分类。
文摘为进一步提升网络入侵检测效果,提出一种融合FAST特征选择与自适应二进制量子引力搜索支持向量机的(FAST-ABQGSA-SVM)网络入侵检测算法。利用FAST算法过滤掉原始特征集中冗余无关的特征形成候选特征子集,基于组合优化策略采用自适应二进制量子引力搜索算法对候选特征子集与SVM分类器参数进行组合优化。在ABQGSA反复学习寻优过程中,采取动态自适应波动式调整策略更新量子旋转角以平衡算法全局搜索能力和局部搜索能力;同时为提升算法的自适应变异能力,设计与进化程度及个体适应度值相关的自适应变异概率,当种群进化出现停滞时及时引入量子位离散交叉操作帮助种群摆脱局部极值。通过KDD CUP 99仿真实验表明,所提出的FAST-ABQGSA-SVM算法较其他同类型检测算法具有更好的鲁棒性、学习精度以及检测效果。
文摘Motion estimation is an important and intensive task in video coding applications. Since the complexity of integer pixel search has been greatly reduced by the numerous fast ME algorithm, the computation overhead required by fractional pixel ME has become relatively significant. To reduce the complexity of the fractional pixel ME algorithm, a directionality-based fractional pixel ME algorithm is proposed. The proposed algorithm efficiently explores the neighborhood positions which with high probability to be the best matching around the minimum one and skips over other unlikely ones. Thus, the proposed algorithm can complete the search by examining only 3 points on appropriate condition instead of 17 search points in the search algorithm of reference software. The simulation results show that the proposed algorithm successfully optimizes the fractional-pixel motion search on both half and quarter-pixel accuracy and improves the processing speed with low PSNR penalty.