When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave ...When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave (PFS) is parallel to both the strike of the cracks and the direction of maximum horizontal stress, therefore it is possible to use PFS to study stress in the crust. This study discusses several examples in which PFS is applied to deduce the compressive stress in North China, Longmenshan fault zone of east edge of Tibetan plateau and Yunnan zone of southeast edge of Tibetan plateau, also discusses temporal variations of PFS orientations of 1999 Xiuyan earthquake sequences of northeastern China. The results are consistent to those of other independent traditional stress measurements. There is a bridge between crustal PFS and the crustal principal compressive stress although there are many unclear disturbance sources. This study suggests the PFS results could be used to deduce regional and in situ principal compressive stress in the crust only if there are enough seismic stations and enough data. At least, PFS is a useful choice in the zone where there are a large number of dense seismic stations.展开更多
Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003, the dominant polarization directions of fast shear-waves are obtained at 10 digital seismic stations by SAM te...Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003, the dominant polarization directions of fast shear-waves are obtained at 10 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan. The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations.show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.展开更多
The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu...The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.展开更多
Using seismic data of the aftershocks sequence of the April 20, 2013 Lushan earthquake recorded by seismic temporary and permanent stations in the source region, with the visual inspection of particle motion diagrams,...Using seismic data of the aftershocks sequence of the April 20, 2013 Lushan earthquake recorded by seismic temporary and permanent stations in the source region, with the visual inspection of particle motion diagrams, this paper preliminarily contains the polarization directions of fast shear wave and the time-delays of split shear waves at every station, and analyzes the crustal anisotropic characteristics in the source region. In the study area, the polarization direc- tions at stations BAX, TQU, L 132, L 133, L 134, and L 135 are northeast, which is consistent with the strike of Dachuan- Shuangshi fault. There are two polarization directions at MDS and L131, which are northeast and southeast. The scatter of polarization directions suggests the complex stress field around these two stations where two faults intersect. For the normalized time-delays at every station, the range is 1.02-8.64 ms/km. The largest time-delay is from L134 which is closest to the mainshock, and the smallest one is from L133. The variations in time-delays show the decreasing at stations BAX, L134, and L135 because of the stress-relaxation after earthquake.展开更多
After Ms=6.5 Yao'an earthquake on January 15, 2000, a large amount of aftershock waveforms were recorded by the Near Source Digital Seismic Network (NSSN) installed by Earthquake Administration of Yunnan Province i...After Ms=6.5 Yao'an earthquake on January 15, 2000, a large amount of aftershock waveforms were recorded by the Near Source Digital Seismic Network (NSSN) installed by Earthquake Administration of Yunnan Province in the aftershock region. It provides profuse data to systematically analyze the features of Yao'an earthquake. The crustal anisotropy is realized by shear wave splitting propagating in the upper crust. Based on the accurate aftershock relocations, the shear wave splitting parameters are determined with the cross-correlation method, and the results of different stations and regions are discussed in this paper. These conclusions are obtained as follows: firstly, the average fast directions of aftershock region are controlled by the regional stress field and parallel to the maximum horizontal compressive stress direction; secondly, the average fast directions of disparate stations and regions are different and vary with the structural settings and regional stress fields; finally, delay time value is affected by all sorts of factors, which is affinitive with the shear wave propagating medium, especially.展开更多
3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ...3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ages.However,traditional methods for testing the shear strength of the interface,e.g.,the direct shear test,are time-consuming and result in a high variability for fast-hardening printed concrete.In this paper,a new fast bond shear test is proposed.Each test can be completed in 1 min,with another 2 min for preparing the next test.The influence of the matrix composition,the age of the printed matrices,and the interface roughness of the artificial rock substrate on the shear strength of the interface was experimentally studied.The tests were conducted at the age of the matrices at the 1st,the 4th,the 8th,the 16th,the 32nd,and the 64th min after its final setting.A dimensionless formula was established to calculate the shear strength,accounting for the age of the printed matrices,the interface roughness,and the shear failure modes.It was validated by comparing the calculated results and the experimental results of one group of samples.展开更多
基金supported by International Science and Technology Cooperation Program of China(2010DFB20190)National Natural Science Foundation of China(41040034 and 41174042)the support by basic research project of Institute of Earthquake Science,China Earthquake Administration(2009IES0211)
文摘When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave (PFS) is parallel to both the strike of the cracks and the direction of maximum horizontal stress, therefore it is possible to use PFS to study stress in the crust. This study discusses several examples in which PFS is applied to deduce the compressive stress in North China, Longmenshan fault zone of east edge of Tibetan plateau and Yunnan zone of southeast edge of Tibetan plateau, also discusses temporal variations of PFS orientations of 1999 Xiuyan earthquake sequences of northeastern China. The results are consistent to those of other independent traditional stress measurements. There is a bridge between crustal PFS and the crustal principal compressive stress although there are many unclear disturbance sources. This study suggests the PFS results could be used to deduce regional and in situ principal compressive stress in the crust only if there are enough seismic stations and enough data. At least, PFS is a useful choice in the zone where there are a large number of dense seismic stations.
基金National Natural Science Foundation of China (40274011).
文摘Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003, the dominant polarization directions of fast shear-waves are obtained at 10 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan. The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations.show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.
基金This work is jointly supported by the National Natural Science Foundation of China(No.41904057)the National Key Research and Development Program of China(No.2018YFC1503402).
文摘The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.
基金supported by Research Project in Earthquake Science(Nos.201308018 and No.201108002) National Natural Science Foundation of China(No.40904012)
文摘Using seismic data of the aftershocks sequence of the April 20, 2013 Lushan earthquake recorded by seismic temporary and permanent stations in the source region, with the visual inspection of particle motion diagrams, this paper preliminarily contains the polarization directions of fast shear wave and the time-delays of split shear waves at every station, and analyzes the crustal anisotropic characteristics in the source region. In the study area, the polarization direc- tions at stations BAX, TQU, L 132, L 133, L 134, and L 135 are northeast, which is consistent with the strike of Dachuan- Shuangshi fault. There are two polarization directions at MDS and L131, which are northeast and southeast. The scatter of polarization directions suggests the complex stress field around these two stations where two faults intersect. For the normalized time-delays at every station, the range is 1.02-8.64 ms/km. The largest time-delay is from L134 which is closest to the mainshock, and the smallest one is from L133. The variations in time-delays show the decreasing at stations BAX, L134, and L135 because of the stress-relaxation after earthquake.
基金National Program on Key Basic Projects (2004CB418406) and Program for the tenth Five-year Plan of China (2004BA601B01-04-03).
文摘After Ms=6.5 Yao'an earthquake on January 15, 2000, a large amount of aftershock waveforms were recorded by the Near Source Digital Seismic Network (NSSN) installed by Earthquake Administration of Yunnan Province in the aftershock region. It provides profuse data to systematically analyze the features of Yao'an earthquake. The crustal anisotropy is realized by shear wave splitting propagating in the upper crust. Based on the accurate aftershock relocations, the shear wave splitting parameters are determined with the cross-correlation method, and the results of different stations and regions are discussed in this paper. These conclusions are obtained as follows: firstly, the average fast directions of aftershock region are controlled by the regional stress field and parallel to the maximum horizontal compressive stress direction; secondly, the average fast directions of disparate stations and regions are different and vary with the structural settings and regional stress fields; finally, delay time value is affected by all sorts of factors, which is affinitive with the shear wave propagating medium, especially.
基金Financial support by the Ministry of Science and Technology of China(No.2021YFE0114100)by the Federal Ministry of Education,Science and Research(BMBWF)of Austria(No.CN11/2021)+5 种基金jointly provided for the project‘Intense Upgrades of the New Austrian Tunnelling Method(NATM)and Demonstration of its Applicability to High-Quality Urban Development’,is gratefully acknowledgedsupported by the Science and Technology Commission of Shanghai Municipality(No.21DZ1203505)the National Natural Science Foundation of China(Grant Nos.51908424 and U1934210)Shanghai Rising-Star Program(No.22QB1405000)Jiangxi Province Department of Transportation Key Engineering Project(No.2021C0008)the financial support provided by the Chinese Scholarship Council(CSC,No.202006260198).
文摘3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ages.However,traditional methods for testing the shear strength of the interface,e.g.,the direct shear test,are time-consuming and result in a high variability for fast-hardening printed concrete.In this paper,a new fast bond shear test is proposed.Each test can be completed in 1 min,with another 2 min for preparing the next test.The influence of the matrix composition,the age of the printed matrices,and the interface roughness of the artificial rock substrate on the shear strength of the interface was experimentally studied.The tests were conducted at the age of the matrices at the 1st,the 4th,the 8th,the 16th,the 32nd,and the 64th min after its final setting.A dimensionless formula was established to calculate the shear strength,accounting for the age of the printed matrices,the interface roughness,and the shear failure modes.It was validated by comparing the calculated results and the experimental results of one group of samples.