Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol...Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability.展开更多
Sol-gel process is one of the simplest techniques to manufacture thin films. The quality of the prepared films depends on the parameters of the sol-gel process and the used technique for deposition. A great variety of...Sol-gel process is one of the simplest techniques to manufacture thin films. The quality of the prepared films depends on the parameters of the sol-gel process and the used technique for deposition. A great variety of the sol-gel derived films have been prepared for different applications. We present a review on the sol-gel derived coatings. The description of the process is introduced in details. Different sol-gel deposition techniques are mentioned. The optical applications of the sol-gel derived coatings are reviewed.展开更多
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
To save energy and raise molding and coremaking productivity, the synthetic procedure of novolaks for the shell process was investigated. The study indicated that it was difficult to obtain fast curing novolaks under ...To save energy and raise molding and coremaking productivity, the synthetic procedure of novolaks for the shell process was investigated. The study indicated that it was difficult to obtain fast curing novolaks under strongly acidic conditions alone. A novel synthetic procedure was proposed for preparing novolaks in a two-step manner, a divalent metal salt catalyzed novolak preparation followed by a strong acid catalyzed novolak preparation. The optimum conditions for the two-step procedure were determined by orthogonal experiment design. The results showed that it was easy to prepare fast curing novolaks with cure time in the range of 20 s to 30 s and softening point in the range of 80℃ to 90℃ under complex catalysis conditions.展开更多
To obtain homogenous layered oxide Li(Co1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material, the sol-gel process using citric acid as a chelating agent was applied. The material Li(Co1/3Ni1/3Mn1/3)...To obtain homogenous layered oxide Li(Co1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material, the sol-gel process using citric acid as a chelating agent was applied. The material Li(Co1/3Ni1/3Mn1/3)O2 was synthesized at different calcination temperatures. XRD experiment indicated that the layered Li(Co1/3Ni1/3Mn1/3)O2 material could be synthesized at a lower temperature of 800℃, and the oxidation state of Co, Ni, and Mn in the cathode confirmed by XPS were +3, +2, and +4, respectively. SEM observations showed that the synthesized material could form homogenous particle morphology with the particle size of about 200 nm. In spite of different calcination temperatures, the charge-discharge curves of all the samples for the initial cycle were similar, and the cathode synthesized at 900℃ showed a small irreversible capacity loss of 11.24% and a high discharge capacity of 212.2 mAh·g^-1 in the voltage range of 2.9-4.6 V.展开更多
Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characte...Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characterized by XRD, TEM, photoluminescence and radioluminescence spectra excited by UV and X-ray, respectively. The purified crystalline phase of LuAG:Ce was obtained at 900 ℃ by directly crystallizing from amorphous materials. The resultant Lu- AG:Ce phosphors were uniform and had good dispersivity with an average particle size of about 30 urn. Both photoluminescence and radioluminescence were well-known Ce^3+ emissions located in the range of 470 -600 nm consisting of two emission bands because of the transition from the lowest 5d excited state (2D) to the 4f ground state of Ce^3+, which matched well with the sensitivity curve of the Si-photodiode. There was a little red shift for the emission components from the UV-excited emission spectrum to the X-ray-excited emission spectrum. The fast scintillation decay component of 26 ns satisfies the requirements of fast scintillators.展开更多
Four results of the rupture process of 14 April 2010 Yushu, Qinghai, earthquake, obtained by inverting the broadband seismic data of Global Seismographic Network (GSN) based on the inversion method of earthquake rup...Four results of the rupture process of 14 April 2010 Yushu, Qinghai, earthquake, obtained by inverting the broadband seismic data of Global Seismographic Network (GSN) based on the inversion method of earthquake rupture process, were compared and discussed. It is found that the Yushu earthquake has several basic characteristics as follows: 1 There exist two principal sub-events which correspond to two slip-concentrated patches being located near the hypocenter and to the southeast of the epicenter. The rupture of the slip-concentrated patch to the southeast of the epicenter broke though the ground surface; 2 The peak slip and peak slip-rate are about 2.1 m and 1.1 m/s, respectively, indicating that the Yushu earthquake is an event with large slip-rate on the fault plane; 3 Overall the Yushu earthquake is a unilateral rupture event with the rupture mainly propagating southeastward. The strong focusing of the seismic energy in the southeast of the epicenter due to the "seismic Doppler effect" reasonably accounts for the tremendous damage in the Yushu city.展开更多
The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La 3+ were studied by chemical p hase analysis, X-ray diffraction and infrared spectrometry an...The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La 3+ were studied by chemical p hase analysis, X-ray diffraction and infrared spectrometry analysis. The expe rimental results show that phase transformation reactions of FeCO 3, Fe 2O 3 and BaFe 2O 4, barium hexaferrite and γ-Fe 2O 3 take place in the heat tr eatment of gel. While the doping lanthanide ion replace barium ion, an equivalen t quantity of Fe 3+ are reduced to Fe 2+ to maintain the charge equili brium.展开更多
CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared s...CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared spectroscopy (IR), thermal gravimetric analysis (TGA), microscopic analysis, X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The catalytic performance for CO2 reforming of methane to synthesis gas was investigated in a continuous-flow micro-reactor under atmospheric pressure. TGA, IR, XRD and microscopic analysis show that the catalysts prepared by the direct sol-gel process consist of Ni particles with a nanostructure of around 5 nm and an amorphous-phase composite oxide support. There exists a chemical interaction between metallic Ni particles and supports, which makes metallic Ni well dispersed, highly active and stable. The addition of CeO2 effectively improves the dispersion and the stability of Ni particles of the prepared catalysts, and enhances the adsorption of CO2 on the surface of catalysts. The catalytic tests for methane reforming with CO2 to synthesis gas show that the Ni/Al2O3-ZrO2-CeO2 catalysts show excellent activity and stability compared with the Ni/Al2O3 catalyst. The excellent catalytic activity and stability of the Ni/Al2O3-ZrO2-CeO2 are attributed to the highly, uniformly and stably dispersed small metallic Ni particles, the high reducibility of the Ni oxides and the interaction between metallic Ni particles and the composite oxide supports.展开更多
By using strontium acetate and titanium n--butoxide [Ti(OBun)4] as starting agents, perovskite -- type double oxide SrTiO3 can be obtained by the sol--gel method. By means of infra-red spectra (IR), X--ray diffraction...By using strontium acetate and titanium n--butoxide [Ti(OBun)4] as starting agents, perovskite -- type double oxide SrTiO3 can be obtained by the sol--gel method. By means of infra-red spectra (IR), X--ray diffraction (XRD), differential thermal analysis (DTG), thermal gravimetry (TG) and scanning electron microscopy (SEM), basical factors, affecting the formation .of SrTiO3,have been discussed. IR results show that the acetic acid as a chelating ligand plays an important role in modifying the whole hydrolysis --condensation process. The addition of glycerol leads to obtaining clear and unique gels. The structure of SrTiO3 calcined at 800℃ is cubic.展开更多
Microstructure and electrical properties of La2 O3-doped ZnO-Bi2 O3 thin films prepared by sol–gel process have been investigated.X-ray diffraction shows that most diffraction peaks of ZnO are equal,and the crystals ...Microstructure and electrical properties of La2 O3-doped ZnO-Bi2 O3 thin films prepared by sol–gel process have been investigated.X-ray diffraction shows that most diffraction peaks of ZnO are equal,and the crystals of ZnO grow well.Scanning electron microscopy and atomic force microscopy results indicate that the samples have a good structure and lower surface roughness.The nonlinear V–I characteristics of the films show that La2 O3 develops the electrical properties largely and the best doped content is 0.3% lanthanum ion,with the leakage current of 0.25 mA,the threshold field of 150 V/mm and the nonlinear coefficient of 4.0 in detail.展开更多
Structural strengthening of the nano porous silica films has been reported. The films were prepared with a base/acid two-step catalyzed TEOS-based sol-gel processing and dip-coating, and then baked in the mixed gas of...Structural strengthening of the nano porous silica films has been reported. The films were prepared with a base/acid two-step catalyzed TEOS-based sol-gel processing and dip-coating, and then baked in the mixed gas of ammonia and water vapor. The silica films were characterized with TEM, AFM, FTIR, spectrophotometer, ellipsometer, and abrasion test, respectively. The experimental results have shown that the films have a nanostructure with a low refractive index and can form an excellent scratch-resistant broadband anti-reflectance. The two-step catalysis noticeably strengthens the films, and the mixed gas treatment further improves mechanical strength of the silica network. Finally the strengthening mechanism has been discussed.展开更多
In this work, TiO2 nanorods with uniform diameter of about 100 nm and a length of several micrometers were successfully prepared by the sol-gel template method. Also the influence of molar ratios of precursor on the m...In this work, TiO2 nanorods with uniform diameter of about 100 nm and a length of several micrometers were successfully prepared by the sol-gel template method. Also the influence of molar ratios of precursor on the morphology and structure of TiO2 nanorods has been investigated. The prepared samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the TiO2 nanorods were crystallized in the anatase and rutile phases, after annealing to 400-700℃ up to 2 h.展开更多
A new organic/inorganic hybrid nonlinear optical (NLO) material was developed by the sol-gel process of an alkoxysilane dye with tetraethoxysilane. A NLO moiety based on 4-nitro-4 ' -hydroxy azobenzene was covalen...A new organic/inorganic hybrid nonlinear optical (NLO) material was developed by the sol-gel process of an alkoxysilane dye with tetraethoxysilane. A NLO moiety based on 4-nitro-4 ' -hydroxy azobenzene was covalently bonded to the triethoxysilane derivative, i.e, gamma -isocyanatopropyl triethoxysilane. The preparation process and properties of the sol-gel derived NLO polymer were studied and characterized by SEM, FTIR,H-1-NMR, UV-Vis, DSC and second harmonic generation (SHG) measurement. The results indicated that the chemical bonding of the chromophores to the inorganic SiO2 networks induces low dipole alignment relaxation and preferable orientational stability. The SHG measurements also showed that the bonded polymer film containing 75 wt% of the akoxysilane dye has a high electro-optic coefficient (r(33)) of 7.1 pm/V at 1.1 mum wavelength, and exhibit good SHG stability, the r(33) values can maintain about 92.7% of its initial value at room temperature for 90 days, and can maintain about 59.3% at 100 degreesC for 300 min.展开更多
Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H2O and catalyst. All poled polymer network films possess high second-...Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H2O and catalyst. All poled polymer network films possess high second-order nonlinear optical coefficients (d(33)) Of 10(-7)similar to 10(-8) esu. The investigation of NLO temporal stability at room temperature and elevated temperature (120 degreesC) indicated that these films exhibit high d(33) stability because the orientation of the chromophores are locked in the phenoxysilicon organic/inorganic networks.展开更多
In this study,a novel solgel method has been developed to prepare LiTi2(PO4)3 lithium ion conductor as monophase at relatively low temperature(600).According to the XRD and IR analysis,the asprepared sample remained a...In this study,a novel solgel method has been developed to prepare LiTi2(PO4)3 lithium ion conductor as monophase at relatively low temperature(600).According to the XRD and IR analysis,the asprepared sample remained an amorphous state up to 500.The activation energy was calculated to be 252 kJ/mol according to the modified Kissinger equation.展开更多
When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive ...When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied.展开更多
Nano silica-modified epoxy resins were synthesized by the sol-gel process, The materials have the morphological structure of nano particales dispersed in the epoxy matrix. The dispersed phase formed a physical network...Nano silica-modified epoxy resins were synthesized by the sol-gel process, The materials have the morphological structure of nano particales dispersed in the epoxy matrix. The dispersed phase formed a physical network in the resin and thus influenced the rheological behavior greatly. However, the nano silica did not show a significant influence on the mechanical properties of the cured resins.展开更多
An effective and reproducible preparation of silica sol nanospheres via a modified sol-gel process has been described. Monodisperse and stable silica sol nanospheres with uniformsize were successfully obtained through...An effective and reproducible preparation of silica sol nanospheres via a modified sol-gel process has been described. Monodisperse and stable silica sol nanospheres with uniformsize were successfully obtained through the optimized synthesis in which the mixture of tetraethyl orthosilicate (TEOS) and ethanol was followed by the addition of water and ammonium hydroxide (NH3) separately, and the size of silica sol spheres was strictly controlled in the range of 25-119 nm with a narrow size distribution by fine adjustment of several reaction parameters. Results showed that in the presence of low concentration of TEOS, spheres size rose first and reached maximum when H2O concentration was up to 66 g/L. However, the diameter of silica sol spheres decreased above 66 g/L of H2O concentration. Furthermore, it was also found that the size and size distribution of silica sol nanospheres were affected by NH3 concentration. As NH3 concentration increased from 15 to 35 g/L, the diameter declined from 83 to 64 nm. Nevertheless, higher NH3 concentration would result in relatively broad size distribution, and gelation occurred when NH3 concentration reached 44 g/L. In addition, the effect of the different feed rates ofNH3 on the size growth of silica sol nanospheres was also discussed.展开更多
基金UK Engineering and Physical Sciences Research Council(EPSRC)New Investigator Award(2018,EP/R043272/1)Newton Advanced Fellowship(192097)for financial support+3 种基金the Royal Society,the Engineering and Physical Sciences Research Council(EPSRC,EP/R023980/1,EP/V027131/1)the European Research Council(ERC)under the European Union's Horizon 2020 research and innovation program(HYPERION,Grant Agreement Number 756962)the Royal Society and Tata Group(UF150033)EPSRC SPECIFIC IKC(EP/N020863/1)
文摘Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability.
基金we are very grateful to the National Natural Scieneo Founda-tion of China(No.69978017,59802007)Shanghai Edu-cation Comrnittee(No.JW99 TJ-03)for their help and 6nancialsupports.
文摘Sol-gel process is one of the simplest techniques to manufacture thin films. The quality of the prepared films depends on the parameters of the sol-gel process and the used technique for deposition. A great variety of the sol-gel derived films have been prepared for different applications. We present a review on the sol-gel derived coatings. The description of the process is introduced in details. Different sol-gel deposition techniques are mentioned. The optical applications of the sol-gel derived coatings are reviewed.
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
文摘To save energy and raise molding and coremaking productivity, the synthetic procedure of novolaks for the shell process was investigated. The study indicated that it was difficult to obtain fast curing novolaks under strongly acidic conditions alone. A novel synthetic procedure was proposed for preparing novolaks in a two-step manner, a divalent metal salt catalyzed novolak preparation followed by a strong acid catalyzed novolak preparation. The optimum conditions for the two-step procedure were determined by orthogonal experiment design. The results showed that it was easy to prepare fast curing novolaks with cure time in the range of 20 s to 30 s and softening point in the range of 80℃ to 90℃ under complex catalysis conditions.
基金The authors would like to thank the financial support of the Major State Basic Research Development Program of China (No.2002CB613303)the National Natural Science Foundation of China (No.20371038)the Foundation for Innovative Research Team of Hubei Province of China(No.2005ABC004).
文摘To obtain homogenous layered oxide Li(Co1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material, the sol-gel process using citric acid as a chelating agent was applied. The material Li(Co1/3Ni1/3Mn1/3)O2 was synthesized at different calcination temperatures. XRD experiment indicated that the layered Li(Co1/3Ni1/3Mn1/3)O2 material could be synthesized at a lower temperature of 800℃, and the oxidation state of Co, Ni, and Mn in the cathode confirmed by XPS were +3, +2, and +4, respectively. SEM observations showed that the synthesized material could form homogenous particle morphology with the particle size of about 200 nm. In spite of different calcination temperatures, the charge-discharge curves of all the samples for the initial cycle were similar, and the cathode synthesized at 900℃ showed a small irreversible capacity loss of 11.24% and a high discharge capacity of 212.2 mAh·g^-1 in the voltage range of 2.9-4.6 V.
基金Project supported by the National Defence Fundamental Research Project of China
文摘Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characterized by XRD, TEM, photoluminescence and radioluminescence spectra excited by UV and X-ray, respectively. The purified crystalline phase of LuAG:Ce was obtained at 900 ℃ by directly crystallizing from amorphous materials. The resultant Lu- AG:Ce phosphors were uniform and had good dispersivity with an average particle size of about 30 urn. Both photoluminescence and radioluminescence were well-known Ce^3+ emissions located in the range of 470 -600 nm consisting of two emission bands because of the transition from the lowest 5d excited state (2D) to the 4f ground state of Ce^3+, which matched well with the sensitivity curve of the Si-photodiode. There was a little red shift for the emission components from the UV-excited emission spectrum to the X-ray-excited emission spectrum. The fast scintillation decay component of 26 ns satisfies the requirements of fast scintillators.
基金supported by China Postdoctoral Science Foundation funded project (20080440435)the project (DQJB09B06) from Institute of Geophysics (IGP),China Earthquake Administration (CEA). Contribution No. is 10FE3002, IGP-CEA
文摘Four results of the rupture process of 14 April 2010 Yushu, Qinghai, earthquake, obtained by inverting the broadband seismic data of Global Seismographic Network (GSN) based on the inversion method of earthquake rupture process, were compared and discussed. It is found that the Yushu earthquake has several basic characteristics as follows: 1 There exist two principal sub-events which correspond to two slip-concentrated patches being located near the hypocenter and to the southeast of the epicenter. The rupture of the slip-concentrated patch to the southeast of the epicenter broke though the ground surface; 2 The peak slip and peak slip-rate are about 2.1 m and 1.1 m/s, respectively, indicating that the Yushu earthquake is an event with large slip-rate on the fault plane; 3 Overall the Yushu earthquake is a unilateral rupture event with the rupture mainly propagating southeastward. The strong focusing of the seismic energy in the southeast of the epicenter due to the "seismic Doppler effect" reasonably accounts for the tremendous damage in the Yushu city.
文摘The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La 3+ were studied by chemical p hase analysis, X-ray diffraction and infrared spectrometry analysis. The expe rimental results show that phase transformation reactions of FeCO 3, Fe 2O 3 and BaFe 2O 4, barium hexaferrite and γ-Fe 2O 3 take place in the heat tr eatment of gel. While the doping lanthanide ion replace barium ion, an equivalen t quantity of Fe 3+ are reduced to Fe 2+ to maintain the charge equili brium.
基金supported by the National Natural Science Foundation of China (NO. 20976013, 21006057)
文摘CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared spectroscopy (IR), thermal gravimetric analysis (TGA), microscopic analysis, X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The catalytic performance for CO2 reforming of methane to synthesis gas was investigated in a continuous-flow micro-reactor under atmospheric pressure. TGA, IR, XRD and microscopic analysis show that the catalysts prepared by the direct sol-gel process consist of Ni particles with a nanostructure of around 5 nm and an amorphous-phase composite oxide support. There exists a chemical interaction between metallic Ni particles and supports, which makes metallic Ni well dispersed, highly active and stable. The addition of CeO2 effectively improves the dispersion and the stability of Ni particles of the prepared catalysts, and enhances the adsorption of CO2 on the surface of catalysts. The catalytic tests for methane reforming with CO2 to synthesis gas show that the Ni/Al2O3-ZrO2-CeO2 catalysts show excellent activity and stability compared with the Ni/Al2O3 catalyst. The excellent catalytic activity and stability of the Ni/Al2O3-ZrO2-CeO2 are attributed to the highly, uniformly and stably dispersed small metallic Ni particles, the high reducibility of the Ni oxides and the interaction between metallic Ni particles and the composite oxide supports.
文摘By using strontium acetate and titanium n--butoxide [Ti(OBun)4] as starting agents, perovskite -- type double oxide SrTiO3 can be obtained by the sol--gel method. By means of infra-red spectra (IR), X--ray diffraction (XRD), differential thermal analysis (DTG), thermal gravimetry (TG) and scanning electron microscopy (SEM), basical factors, affecting the formation .of SrTiO3,have been discussed. IR results show that the acetic acid as a chelating ligand plays an important role in modifying the whole hydrolysis --condensation process. The addition of glycerol leads to obtaining clear and unique gels. The structure of SrTiO3 calcined at 800℃ is cubic.
基金Project(20123227120021)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(BK2012156)supported by the Natural Science Foundation of Jiangsu Province,China+3 种基金Project(KFJJ201105)supported by the Opening Project of State Key Laboratory of Electronic Thin Films and Integrated Devices,ChinaProject(CJ20125001)supported by the Application Program for Basic Research of Changzhou,ChinaProject(13KJB430006)supported by the Universities Natural Science Research project of Jiangsu Province,ChinaProject supported by the Industrial Center of Jiangsu University Undergraduate Practice-Innovation Training Program,China
文摘Microstructure and electrical properties of La2 O3-doped ZnO-Bi2 O3 thin films prepared by sol–gel process have been investigated.X-ray diffraction shows that most diffraction peaks of ZnO are equal,and the crystals of ZnO grow well.Scanning electron microscopy and atomic force microscopy results indicate that the samples have a good structure and lower surface roughness.The nonlinear V–I characteristics of the films show that La2 O3 develops the electrical properties largely and the best doped content is 0.3% lanthanum ion,with the leakage current of 0.25 mA,the threshold field of 150 V/mm and the nonlinear coefficient of 4.0 in detail.
基金the National Natural Science Foundation of China(No:69978017,20133040)Shanghai Key Subject Programme,Chinese Foundation of High Technology(2002AA842052)Shanghai Natural Science Foundation(02ZE14101)as well as Shanghai Nanotechnology Promotion Center(0159um039).
文摘Structural strengthening of the nano porous silica films has been reported. The films were prepared with a base/acid two-step catalyzed TEOS-based sol-gel processing and dip-coating, and then baked in the mixed gas of ammonia and water vapor. The silica films were characterized with TEM, AFM, FTIR, spectrophotometer, ellipsometer, and abrasion test, respectively. The experimental results have shown that the films have a nanostructure with a low refractive index and can form an excellent scratch-resistant broadband anti-reflectance. The two-step catalysis noticeably strengthens the films, and the mixed gas treatment further improves mechanical strength of the silica network. Finally the strengthening mechanism has been discussed.
文摘In this work, TiO2 nanorods with uniform diameter of about 100 nm and a length of several micrometers were successfully prepared by the sol-gel template method. Also the influence of molar ratios of precursor on the morphology and structure of TiO2 nanorods has been investigated. The prepared samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the TiO2 nanorods were crystallized in the anatase and rutile phases, after annealing to 400-700℃ up to 2 h.
基金This work was supported by the Postdoctoral Science Foundation of Guangdong Province (No. 9644) and the Natural Science Fund of Guangdong Province(No. 990629).
文摘A new organic/inorganic hybrid nonlinear optical (NLO) material was developed by the sol-gel process of an alkoxysilane dye with tetraethoxysilane. A NLO moiety based on 4-nitro-4 ' -hydroxy azobenzene was covalently bonded to the triethoxysilane derivative, i.e, gamma -isocyanatopropyl triethoxysilane. The preparation process and properties of the sol-gel derived NLO polymer were studied and characterized by SEM, FTIR,H-1-NMR, UV-Vis, DSC and second harmonic generation (SHG) measurement. The results indicated that the chemical bonding of the chromophores to the inorganic SiO2 networks induces low dipole alignment relaxation and preferable orientational stability. The SHG measurements also showed that the bonded polymer film containing 75 wt% of the akoxysilane dye has a high electro-optic coefficient (r(33)) of 7.1 pm/V at 1.1 mum wavelength, and exhibit good SHG stability, the r(33) values can maintain about 92.7% of its initial value at room temperature for 90 days, and can maintain about 59.3% at 100 degreesC for 300 min.
文摘Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H2O and catalyst. All poled polymer network films possess high second-order nonlinear optical coefficients (d(33)) Of 10(-7)similar to 10(-8) esu. The investigation of NLO temporal stability at room temperature and elevated temperature (120 degreesC) indicated that these films exhibit high d(33) stability because the orientation of the chromophores are locked in the phenoxysilicon organic/inorganic networks.
文摘In this study,a novel solgel method has been developed to prepare LiTi2(PO4)3 lithium ion conductor as monophase at relatively low temperature(600).According to the XRD and IR analysis,the asprepared sample remained an amorphous state up to 500.The activation energy was calculated to be 252 kJ/mol according to the modified Kissinger equation.
基金supported by the New Century Excellent Talents in University(NCET-09-0396)the National Science&Technology Key Projects of Numerical Control(2012ZX04014-031)+1 种基金the Natural Science Foundation of Hubei Province(2011CDB279)the Foundation for Innovative Research Groups of the Natural Science Foundation of Hubei Province,China(2010CDA067)
文摘When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied.
基金This work was supported by the Ford-China Research and Development Fund (No.9415311).
文摘Nano silica-modified epoxy resins were synthesized by the sol-gel process, The materials have the morphological structure of nano particales dispersed in the epoxy matrix. The dispersed phase formed a physical network in the resin and thus influenced the rheological behavior greatly. However, the nano silica did not show a significant influence on the mechanical properties of the cured resins.
基金Funded by the Guangdong Well-Silicasol Company Limited,China
文摘An effective and reproducible preparation of silica sol nanospheres via a modified sol-gel process has been described. Monodisperse and stable silica sol nanospheres with uniformsize were successfully obtained through the optimized synthesis in which the mixture of tetraethyl orthosilicate (TEOS) and ethanol was followed by the addition of water and ammonium hydroxide (NH3) separately, and the size of silica sol spheres was strictly controlled in the range of 25-119 nm with a narrow size distribution by fine adjustment of several reaction parameters. Results showed that in the presence of low concentration of TEOS, spheres size rose first and reached maximum when H2O concentration was up to 66 g/L. However, the diameter of silica sol spheres decreased above 66 g/L of H2O concentration. Furthermore, it was also found that the size and size distribution of silica sol nanospheres were affected by NH3 concentration. As NH3 concentration increased from 15 to 35 g/L, the diameter declined from 83 to 64 nm. Nevertheless, higher NH3 concentration would result in relatively broad size distribution, and gelation occurred when NH3 concentration reached 44 g/L. In addition, the effect of the different feed rates ofNH3 on the size growth of silica sol nanospheres was also discussed.