This paper presents the design of an experimental battlefield dynamic scanning and staring imaging system based on a fast steering mirror(FSM), which is capable of real-time monitoring of hot targets and wide-area rec...This paper presents the design of an experimental battlefield dynamic scanning and staring imaging system based on a fast steering mirror(FSM), which is capable of real-time monitoring of hot targets and wide-area reconnaissance of hot regions. First,the working principle and working sequence of the FSM are briefly analyzed. The mathematical model of the FSM system is built by modeling its dynamic and electrical properties, and the rationality of the model is validated by means of model identification. Second,the influence of external sources of disturbance such as the carrier and moment on the control precision of the FSM is effectively suppressed by the jointly controlling of proportional integral(PI)and disturbance observer(DOB), thus realizing a high precision and strong robustness control of the FSM system. Then, this paper designs an experimental prototype and introduces a special optical structure to enable the infrared camera to share the FSM with the visible light camera. Finally, the influence of the velocity difference between the mirror of the FSM and the rotating platform on the imaging quality of the system is experimentally analyzed by using the image sharpness evaluation method based on point sharpness. A good dynamic scanning and staring imaging result is achieved when the velocity of these two components correspond.展开更多
This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of ...This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.展开更多
A modeling method is proposed for a dynamic fast steering mirror(FSM) system with dual inputs and dual outputs. A physical model of the FSM system is derived based on first principles, describing the dynamics and coup...A modeling method is proposed for a dynamic fast steering mirror(FSM) system with dual inputs and dual outputs. A physical model of the FSM system is derived based on first principles, describing the dynamics and coupling between the inputs and outputs of the FSM system. The physical model is then represented in a state-space form. Unknown parameters in the state-space model are identified by the subspace identification algorithm, based on the measured input-output data of the FSM system. The accuracy of the state-space model is evaluated by comparing the model estimates with measurements. The variance-accounted-for value of the state-space model is better than 97%, not only for the modeling data but also for the validation data set, indicating high accuracy of the model. Comparison is also made between the proposed dynamic model and the conventional static model, where improvement in model accuracy is clearly observed. The model identified by the proposed method can be used for optimal controller design for closed-loop FSM systems. The modeling method is also applicable to FSM systems with similar structures.展开更多
In this paper, in order to design a fast steering mirror(FSM) with large deflection angle and high linearity, a deflection angle detecting system(DADS) using quadrant detector(QD) is developed. And the mathematical mo...In this paper, in order to design a fast steering mirror(FSM) with large deflection angle and high linearity, a deflection angle detecting system(DADS) using quadrant detector(QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.展开更多
基金supported by the National Defense Pre-research Project of China during the 12th Five-year Plan Period(4040570201)Innovation Project of Military Academy(ZYX14060014)
文摘This paper presents the design of an experimental battlefield dynamic scanning and staring imaging system based on a fast steering mirror(FSM), which is capable of real-time monitoring of hot targets and wide-area reconnaissance of hot regions. First,the working principle and working sequence of the FSM are briefly analyzed. The mathematical model of the FSM system is built by modeling its dynamic and electrical properties, and the rationality of the model is validated by means of model identification. Second,the influence of external sources of disturbance such as the carrier and moment on the control precision of the FSM is effectively suppressed by the jointly controlling of proportional integral(PI)and disturbance observer(DOB), thus realizing a high precision and strong robustness control of the FSM system. Then, this paper designs an experimental prototype and introduces a special optical structure to enable the infrared camera to share the FSM with the visible light camera. Finally, the influence of the velocity difference between the mirror of the FSM and the rotating platform on the imaging quality of the system is experimentally analyzed by using the image sharpness evaluation method based on point sharpness. A good dynamic scanning and staring imaging result is achieved when the velocity of these two components correspond.
基金Projects(51135009)supported by the National Natural Science Foundation of China
文摘This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.
基金supported by the National Natural Science Foundation of China(No.11304278)the National High-Tech R&D Program(863)of China(No.2014AA093400)
文摘A modeling method is proposed for a dynamic fast steering mirror(FSM) system with dual inputs and dual outputs. A physical model of the FSM system is derived based on first principles, describing the dynamics and coupling between the inputs and outputs of the FSM system. The physical model is then represented in a state-space form. Unknown parameters in the state-space model are identified by the subspace identification algorithm, based on the measured input-output data of the FSM system. The accuracy of the state-space model is evaluated by comparing the model estimates with measurements. The variance-accounted-for value of the state-space model is better than 97%, not only for the modeling data but also for the validation data set, indicating high accuracy of the model. Comparison is also made between the proposed dynamic model and the conventional static model, where improvement in model accuracy is clearly observed. The model identified by the proposed method can be used for optimal controller design for closed-loop FSM systems. The modeling method is also applicable to FSM systems with similar structures.
基金supported by the National Natural Science Foundation of China(No.51605465)
文摘In this paper, in order to design a fast steering mirror(FSM) with large deflection angle and high linearity, a deflection angle detecting system(DADS) using quadrant detector(QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.