Oversampling is commonly encountered in orthogonal frequency division multiplexing (OFDM) systems to ease various performance characteristics. In this paper, we investigate the performance and complexity of one tap ze...Oversampling is commonly encountered in orthogonal frequency division multiplexing (OFDM) systems to ease various performance characteristics. In this paper, we investigate the performance and complexity of one tap zero-forcing (ZF) and minimum mean-square error (MMSE) equalizers in oversampled OFDM systems. Theoretical analysis and simulation results show that oversampling not only reduces the noise at equalizer output but also helps mitigate ill effects of spectral nulls. One tap equalizers therefore yield improved symbol-error-rate (SER) performance with the increase in oversampling rate, but at the expense of increased system bandwidth and modest complexity requirements.展开更多
文摘Oversampling is commonly encountered in orthogonal frequency division multiplexing (OFDM) systems to ease various performance characteristics. In this paper, we investigate the performance and complexity of one tap zero-forcing (ZF) and minimum mean-square error (MMSE) equalizers in oversampled OFDM systems. Theoretical analysis and simulation results show that oversampling not only reduces the noise at equalizer output but also helps mitigate ill effects of spectral nulls. One tap equalizers therefore yield improved symbol-error-rate (SER) performance with the increase in oversampling rate, but at the expense of increased system bandwidth and modest complexity requirements.