To avoid the serious accidents caused by the failure fastening bolts on reciprocating compressor cylinder cover,a new nondestructive testing(NDT) technology,metal magnetic memory(MMM) testing,was applied to safety eva...To avoid the serious accidents caused by the failure fastening bolts on reciprocating compressor cylinder cover,a new nondestructive testing(NDT) technology,metal magnetic memory(MMM) testing,was applied to safety evaluating and failure analyzing for the fastening bolts.Based on the dynamic stress calculation of the failure bolts,MMM testing was carried out at workshop.Given are the MMM stress distribution characteristics of the failure bolts and fracture faces.It has been found that the MMM signal variation amplitude of the crack transition zone in the fracture surface is minimal,that of the crack initiation zone is in the middle,and that of the tear fracture zone is maximal.The failure reasons were analyzed with MMM effect.The results of the metallographic examination showed that the validity and feasibility of MMM testing and failure analysis.This means MMM technology is a new,fast and validity method of failure analysis.展开更多
This paper investigates the self-loosening of threaded fasteners subjected to dynamic shear load. Three kinds of typical coatings, PTFE, MoS_2, and TiN applied to bolts and nuts, are tested in this investigation. The ...This paper investigates the self-loosening of threaded fasteners subjected to dynamic shear load. Three kinds of typical coatings, PTFE, MoS_2, and TiN applied to bolts and nuts, are tested in this investigation. The study experimentally examines the loosening mechanisms of fasteners and assesses the anti-loosening performance of the three tested coatings based on their tightening characteristics, loosening curves, and the damage of thread surface. Additionally, the anti-loosening performance of the three coatings is compared under different load forms. The results indicate that the PTFE and MoS_2 coatings have significant anti-loosening effect, whereas the anti-loosening performance of Ti N coating is not satisfactory. It is also found that an appropriate increase of the initial tightening torque can significantly improve the anti-loosening effect. In addition, the microscopic analyses of PTFE and MoS2 coating reveal that a reduced initial tightening torque leads to fretting wear on the thread contact surfaces of fasteners, thereby aggravating the damage.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No. 11072056)Natural Science Foundation of Heilongjiang Province of China(Grant No.A200907)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20092322120001)
文摘To avoid the serious accidents caused by the failure fastening bolts on reciprocating compressor cylinder cover,a new nondestructive testing(NDT) technology,metal magnetic memory(MMM) testing,was applied to safety evaluating and failure analyzing for the fastening bolts.Based on the dynamic stress calculation of the failure bolts,MMM testing was carried out at workshop.Given are the MMM stress distribution characteristics of the failure bolts and fracture faces.It has been found that the MMM signal variation amplitude of the crack transition zone in the fracture surface is minimal,that of the crack initiation zone is in the middle,and that of the tear fracture zone is maximal.The failure reasons were analyzed with MMM effect.The results of the metallographic examination showed that the validity and feasibility of MMM testing and failure analysis.This means MMM technology is a new,fast and validity method of failure analysis.
基金the financial support provided by the National Science Funds for Distinguished Young Scholars(No.51025519)the Changjiang Scholarships and Innovation Team Development Plan(No.IRT1178)the Self-Topic Fund of Traction Power State Key Laboratory(No.2016TPL-Z03)
文摘This paper investigates the self-loosening of threaded fasteners subjected to dynamic shear load. Three kinds of typical coatings, PTFE, MoS_2, and TiN applied to bolts and nuts, are tested in this investigation. The study experimentally examines the loosening mechanisms of fasteners and assesses the anti-loosening performance of the three tested coatings based on their tightening characteristics, loosening curves, and the damage of thread surface. Additionally, the anti-loosening performance of the three coatings is compared under different load forms. The results indicate that the PTFE and MoS_2 coatings have significant anti-loosening effect, whereas the anti-loosening performance of Ti N coating is not satisfactory. It is also found that an appropriate increase of the initial tightening torque can significantly improve the anti-loosening effect. In addition, the microscopic analyses of PTFE and MoS2 coating reveal that a reduced initial tightening torque leads to fretting wear on the thread contact surfaces of fasteners, thereby aggravating the damage.