The transcription factor Sox11 plays important roles in retinal neurogenesis during vertebrate eye development.However,its function in retina regeneration remains elusive.Here we report that Sox11 b,a zebrafish Sox11 ...The transcription factor Sox11 plays important roles in retinal neurogenesis during vertebrate eye development.However,its function in retina regeneration remains elusive.Here we report that Sox11 b,a zebrafish Sox11 homolog,regulates the migration and fate determination of Müller glia-derived progenitors(MGPCs)in an adult zebrafish model of mechanical retinal injury.Following a stab injury,the expression of Sox11 b was induced in proliferating MGPCs in the retina.Sox11 b knockdown did not affect MGPC formation at 4 days post-injury,although the nuclear morphology and subsequent radial migration of MGPCs were alte red.At 7 days post-injury,Sox11 b knockdown res ulted in an increased proportion of MGPCs in the inner retina and a decreased propo rtion of MGPCs in the outer nuclear layer,compared with controls.Furthermore,Sox11 b knockdown led to reduced photoreceptor regeneration,while it increased the numbe rs of newborn amacrines and retinal ganglion cells.Finally,quantitative polymerase chain reaction analysis revealed that Sox11 b regulated the expression of Notch signaling components in the retina,and Notch inhibition partially recapitulated the Sox11 b knockdown phenotype,indicating that Notch signaling functions downstream of Sox11 b.Our findings imply that Sox11 b plays key roles in MGPC migration and fate determination during retina regeneration in zebrafish,which may have critical im plications for future explorations of retinal repair in mammals.展开更多
The knowledge of the existence,distribution and fate of polycyclic aromatic hydrocarbons(PAHs)and substituted polycyclic aromatic hydrocarbons(SPAHs)in wastewater treatment plants(WWTPs)was vital for reducing their co...The knowledge of the existence,distribution and fate of polycyclic aromatic hydrocarbons(PAHs)and substituted polycyclic aromatic hydrocarbons(SPAHs)in wastewater treatment plants(WWTPs)was vital for reducing their concentrations entering the aquatic environment.The concentrations of 13 SPAHs and 16 PAHs were all determined in a WWTP with styrene butadiene rubber(SBR)in partnership with the moving bed biofilm reactor(MBBR)process.SPAHs presented a higher concentration lever than PAHs in nearly all samples.The total removal efficiencies of PAHs and SPAHs ranged from 64.0%to 71.36%and 78.4%to 79.7%,respectively.The total yearly loads of PAHs(43.0 kg)and SPAHs(73.0 kg)were mainly reduced by the primary and SBR/MBBR biological treatment stages.The tertiary treatment stage had a minor contribution to target compounds removal.According to a synthesis and improvement fate model,we found that the dominant processes changed as the chemical octanol water partition coefficient(K_(ow))increased.But the seasonal variations of experimental removal efficiencies were more obvious than that of predicted data.In the primary sedimentation tank,dissolution in the aqueous phase and sorption to sludge/particulate matter were controlling processes for the removal of PAHs and SPAHs.The sorption to sludge and biodegradation were the principal removal mechanisms during the SBR/MBBR biological treatment process.The contribution of volatilization to removal was always insignificant.Furthermore,the basic physicochemical properties and operating parameters influenced the fate of PAHs and SPAHs in the WWTP.展开更多
The relationship between the fate of nitrogen (N) fertilizer and the N application rate in paddy fields in Northeast China is unclear,as is the fate of residual N.To clarify these issues,paddy field and15N microplot e...The relationship between the fate of nitrogen (N) fertilizer and the N application rate in paddy fields in Northeast China is unclear,as is the fate of residual N.To clarify these issues,paddy field and15N microplot experiments were carried out in 2017 and 2018,with N applications at five levels:0,75,105,135 and 165 kg N ha–1(N0,N75,N105,N135 and N165,respectively).15N-labeled urea was applied to the microplots in 2017,and the same amount of unlabeled urea was applied in 2018.Ammonia (NH3) volatilization,leaching,surface runoff,rice yield,the N contents and15N abundances of both plants and soil were analyzed.The results indicated a linear platform model for rice yield and the application rate of N fertilizer,and the optimal rate was 135 kg N ha–1.N uptake increased with an increasing N rate,and the recovery efficiency of applied N (REN) values of the difference subtraction method were 45.23 and 56.98%on average in 2017and 2018,respectively.The RENwas the highest at the N rate of 135 kg ha–1in 2017 and it was insignificantly affected by the N application rate in 2018,while the agronomic efficiency of applied N (AEN) and physiological efficiency of applied N (PEN) decreased significantly when excessive N was applied.N loss through NH3volatilization,leaching and surface runoff was low in the paddy fields in Northeast China.NH3volatilization accounted for 0.81 and 2.99%of the total N application in 2017 and 2018,respectively.On average,the leaching and surface runoff rates were 4.45% and less than 1.05%,respectively,but the apparent denitrification loss was approximately 42.63%.The residual N fertilizer in the soil layer (0–40 cm) was 18.37–31.81 kg N ha–1in 2017,and the residual rate was 19.28–24.50%.Residual15N from fertilizer in the soil increased significantly with increasing N fertilizer,which was mainly concentrated in the 0–10 cm soil layer,accounting for 58.45–83.54% of the total residual N,and decreased with increasing depth.While the ratio of residual N in the 0–10 cm soil layer to that in the 0–40 cm soil layer was decreased with increasing N application.Furthermore,of the residual N,approximately 5.4%was taken up on average in the following season and 50.2%was lost,but 44.4%remained in the soil.Hence,the amount of applied N fertilizer should be reduced appropriately due to the high residual N in paddy fields in Northeast China.The appropriate N fertilizer rate in the northern fields in China was determined to be 105–135 kg N ha–1in order to achieve a balance between rice yield and high N fertilizer uptake.展开更多
Japanese British writer Kazuo Ishiguro is one of the leading writers in contemporary British literature.He has always been committed to creating works with universal significance.Responsibility and destiny are themes ...Japanese British writer Kazuo Ishiguro is one of the leading writers in contemporary British literature.He has always been committed to creating works with universal significance.Responsibility and destiny are themes that run through his works.His novel Never Let Me Go tells a story of a group of clones growing up in the Hailsham,who are given the mission to donate organs at birth.So,there is no doubt that they will inevitably end their lives in the process of donating organs to human beings again and again.The tragic life of clones is determined by the motivation of human to create them.展开更多
[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying ...[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China.展开更多
To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was...To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was determined in an alpine meadow for two months. Two weeks after 15 N application, total recovery of 15 N from NO - 3_ 15 N was 73.5% while it was 78% from NH + 4_ 15 N. More 15 N was recovered in plants than in soil organic matter or in microbial biomass, irrespective of forms of N added. After one month, 70.6% of added NO - 3_ 15 N and 57.4% of NH + 4_ 15 N were recovered in soils and plants. 15 N recovered in soil organic matter decreased greatly while that recovered in plants varied little, irrespective of the form N. Compared with the results of two weeks after 15 N application, more NO - 3_ 15 N than NH + 4_ 15 N was recovered in microbial biomass. Total recovery was 58.4% (six weeks) and 67% (eight weeks) from NO - 3_ 15 N, and 43.1% and 49% from NH + 4_ 15 N, respectively. Both plants and soil microorganism recovered more NO - 3_ 15 N than NH + 4_ 15 N. But plants recovered more 15 N than soil microorganisms. During the whole experiment plants retained more NO - 3_N and 15 N than soil microorganisms while 15 N recovered in inorganic N pool did not exceed 1% due to lower amount of inorganic N. This indicates that plants play more important roles in the retention of deposited N although microbial biomass can be an important sink for deposited N in early days after N application.展开更多
基金supported by the National Key Research and Development Project of China,Nos.2017YFA0104100(to JL),2017YFA0701304(to HX)National Natural Science Foundation of China Nos.81970820(to HX),31930068(to JL)。
文摘The transcription factor Sox11 plays important roles in retinal neurogenesis during vertebrate eye development.However,its function in retina regeneration remains elusive.Here we report that Sox11 b,a zebrafish Sox11 homolog,regulates the migration and fate determination of Müller glia-derived progenitors(MGPCs)in an adult zebrafish model of mechanical retinal injury.Following a stab injury,the expression of Sox11 b was induced in proliferating MGPCs in the retina.Sox11 b knockdown did not affect MGPC formation at 4 days post-injury,although the nuclear morphology and subsequent radial migration of MGPCs were alte red.At 7 days post-injury,Sox11 b knockdown res ulted in an increased proportion of MGPCs in the inner retina and a decreased propo rtion of MGPCs in the outer nuclear layer,compared with controls.Furthermore,Sox11 b knockdown led to reduced photoreceptor regeneration,while it increased the numbe rs of newborn amacrines and retinal ganglion cells.Finally,quantitative polymerase chain reaction analysis revealed that Sox11 b regulated the expression of Notch signaling components in the retina,and Notch inhibition partially recapitulated the Sox11 b knockdown phenotype,indicating that Notch signaling functions downstream of Sox11 b.Our findings imply that Sox11 b plays key roles in MGPC migration and fate determination during retina regeneration in zebrafish,which may have critical im plications for future explorations of retinal repair in mammals.
基金This work was supported by the National Natural Science Foundation of China(No.51979255).
文摘The knowledge of the existence,distribution and fate of polycyclic aromatic hydrocarbons(PAHs)and substituted polycyclic aromatic hydrocarbons(SPAHs)in wastewater treatment plants(WWTPs)was vital for reducing their concentrations entering the aquatic environment.The concentrations of 13 SPAHs and 16 PAHs were all determined in a WWTP with styrene butadiene rubber(SBR)in partnership with the moving bed biofilm reactor(MBBR)process.SPAHs presented a higher concentration lever than PAHs in nearly all samples.The total removal efficiencies of PAHs and SPAHs ranged from 64.0%to 71.36%and 78.4%to 79.7%,respectively.The total yearly loads of PAHs(43.0 kg)and SPAHs(73.0 kg)were mainly reduced by the primary and SBR/MBBR biological treatment stages.The tertiary treatment stage had a minor contribution to target compounds removal.According to a synthesis and improvement fate model,we found that the dominant processes changed as the chemical octanol water partition coefficient(K_(ow))increased.But the seasonal variations of experimental removal efficiencies were more obvious than that of predicted data.In the primary sedimentation tank,dissolution in the aqueous phase and sorption to sludge/particulate matter were controlling processes for the removal of PAHs and SPAHs.The sorption to sludge and biodegradation were the principal removal mechanisms during the SBR/MBBR biological treatment process.The contribution of volatilization to removal was always insignificant.Furthermore,the basic physicochemical properties and operating parameters influenced the fate of PAHs and SPAHs in the WWTP.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28100302)the earmarked fund for China Agriculture Research System (CARS-01-29)+2 种基金the National Key Research and Development Program of China(2017YFD0200104)the Fifth (2019) of ‘Young Talents’ Project of Northeast Agricultural University,Chinathe Open Program of Key Laboratory of Germplasm Enhancement,Physiology and Ecology of Food Crops in Cold Region,Ministry of Education,Northeast Agricultural University (CXSTOP2021009)。
文摘The relationship between the fate of nitrogen (N) fertilizer and the N application rate in paddy fields in Northeast China is unclear,as is the fate of residual N.To clarify these issues,paddy field and15N microplot experiments were carried out in 2017 and 2018,with N applications at five levels:0,75,105,135 and 165 kg N ha–1(N0,N75,N105,N135 and N165,respectively).15N-labeled urea was applied to the microplots in 2017,and the same amount of unlabeled urea was applied in 2018.Ammonia (NH3) volatilization,leaching,surface runoff,rice yield,the N contents and15N abundances of both plants and soil were analyzed.The results indicated a linear platform model for rice yield and the application rate of N fertilizer,and the optimal rate was 135 kg N ha–1.N uptake increased with an increasing N rate,and the recovery efficiency of applied N (REN) values of the difference subtraction method were 45.23 and 56.98%on average in 2017and 2018,respectively.The RENwas the highest at the N rate of 135 kg ha–1in 2017 and it was insignificantly affected by the N application rate in 2018,while the agronomic efficiency of applied N (AEN) and physiological efficiency of applied N (PEN) decreased significantly when excessive N was applied.N loss through NH3volatilization,leaching and surface runoff was low in the paddy fields in Northeast China.NH3volatilization accounted for 0.81 and 2.99%of the total N application in 2017 and 2018,respectively.On average,the leaching and surface runoff rates were 4.45% and less than 1.05%,respectively,but the apparent denitrification loss was approximately 42.63%.The residual N fertilizer in the soil layer (0–40 cm) was 18.37–31.81 kg N ha–1in 2017,and the residual rate was 19.28–24.50%.Residual15N from fertilizer in the soil increased significantly with increasing N fertilizer,which was mainly concentrated in the 0–10 cm soil layer,accounting for 58.45–83.54% of the total residual N,and decreased with increasing depth.While the ratio of residual N in the 0–10 cm soil layer to that in the 0–40 cm soil layer was decreased with increasing N application.Furthermore,of the residual N,approximately 5.4%was taken up on average in the following season and 50.2%was lost,but 44.4%remained in the soil.Hence,the amount of applied N fertilizer should be reduced appropriately due to the high residual N in paddy fields in Northeast China.The appropriate N fertilizer rate in the northern fields in China was determined to be 105–135 kg N ha–1in order to achieve a balance between rice yield and high N fertilizer uptake.
文摘Japanese British writer Kazuo Ishiguro is one of the leading writers in contemporary British literature.He has always been committed to creating works with universal significance.Responsibility and destiny are themes that run through his works.His novel Never Let Me Go tells a story of a group of clones growing up in the Hailsham,who are given the mission to donate organs at birth.So,there is no doubt that they will inevitably end their lives in the process of donating organs to human beings again and again.The tragic life of clones is determined by the motivation of human to create them.
基金Supported by the Financial Breeding Fund for Young Scholars in Sichuan Province(2008QNJJ-016)Financial Fund for Excellent Gene Engineering Papers in Sichuan Province (2010LWJJ-008)~~
文摘[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China.
文摘To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was determined in an alpine meadow for two months. Two weeks after 15 N application, total recovery of 15 N from NO - 3_ 15 N was 73.5% while it was 78% from NH + 4_ 15 N. More 15 N was recovered in plants than in soil organic matter or in microbial biomass, irrespective of forms of N added. After one month, 70.6% of added NO - 3_ 15 N and 57.4% of NH + 4_ 15 N were recovered in soils and plants. 15 N recovered in soil organic matter decreased greatly while that recovered in plants varied little, irrespective of the form N. Compared with the results of two weeks after 15 N application, more NO - 3_ 15 N than NH + 4_ 15 N was recovered in microbial biomass. Total recovery was 58.4% (six weeks) and 67% (eight weeks) from NO - 3_ 15 N, and 43.1% and 49% from NH + 4_ 15 N, respectively. Both plants and soil microorganism recovered more NO - 3_ 15 N than NH + 4_ 15 N. But plants recovered more 15 N than soil microorganisms. During the whole experiment plants retained more NO - 3_N and 15 N than soil microorganisms while 15 N recovered in inorganic N pool did not exceed 1% due to lower amount of inorganic N. This indicates that plants play more important roles in the retention of deposited N although microbial biomass can be an important sink for deposited N in early days after N application.