Some representative working conditions were measured, and the amplitude distribution rule of each representative working condition after analysis of measured data was got. The building of 2 D distributing function be...Some representative working conditions were measured, and the amplitude distribution rule of each representative working condition after analysis of measured data was got. The building of 2 D distributing function between the range and the mean of random load was discussed. Experiment was carried out to get the fatigue strength data of the material of transmission component. Accessing the P S a S m N camber of combined load of bending and torsion on this material after analysis. And the process of calculating the 2 D fatigue life in multi working condition was discussed.展开更多
A state-of-art review is given to the new advances on fatigue reliability design and analysis methods of Chinese railway vehicle's structures. First, the structures are subject to a complicated random fatigue stressi...A state-of-art review is given to the new advances on fatigue reliability design and analysis methods of Chinese railway vehicle's structures. First, the structures are subject to a complicated random fatigue stressing history and this history should be determined by combining dynamic simulation and on-line inspection. Second, the random fatigue constitutions belong to an intrinsic fatigue phenomenon and a probabilistic model is developed to well describe them with two measurements of survival probability and confidence, similar model is also presented for the random stress-life rela- tions and extrapolated appropriately into Song fatigue life regime. Third, concept of the fatigue limit should be understood as the fatigue strength at a given fatigue life and a so-called local Basquin model method is proposed for measuring the random strengths. In addition, drawing and application methods of the Goodman-Smith diagram for integrally characterizing the random fatigue strengths are established in terms of ten kilometers. Fourth, a reliability stress-based method is constructed with a consideration of the random constitutive relations. These new advances form a new frame work for railway fatigue reliability design and analysis.展开更多
The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading f...The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading frequency, loading range and the parameters of fracture design for medium carbon steel on condition of extra-low axial fatigue loading were discussed based on the experiments. Experimental results indicated that the tension-pressure fatigue loading mode was suitable for extra-low cyclic fatigue fracture design of medium carbon steel and it resulted in low energy consumption, fracture surface with high quality, low cycle times, and high efficiency. The appropriate parameters were as follows: loading frequency 3-5 Hz, notch tip radius r = (0.2-0.3) mm, opening angle α = 60°, and notch depth t = (0.14-0.17)D.展开更多
Various micro-mechanical and micro-structural influences on fatigue crack growth resistance of the material have been investigated over the years. It is widely recognized that resistance to fatigue crack growth can be...Various micro-mechanical and micro-structural influences on fatigue crack growth resistance of the material have been investigated over the years. It is widely recognized that resistance to fatigue crack growth can be differentiated into ‘intrinsic' and ‘extrinsic'. The separation of intrinsic and extrinsic crack growth resistance has constituted a major theme of fatigue research in the last 30 years, with the concept of crack closure or crack tip shielding being used to rationalize a wide range of micro-structural and mechanical influences on fatigue crack growth behavior. An accurately quantitative understanding of intrinsic and extrinsic effects on crack growth is essential to directed alloy design for improved fatigue resistance, and/or improved structural service life. This paper presents a compliance-based crack closure measurement method and a multi-mechanism based analytical model for the separation of intrinsic and extrinsic material fatigue resistance, with application in characterizing the fatigue performance of two high strength damage tolerant airframe AI alloys.展开更多
Concerning the notable difference between the S-N curve slope of welded joints treated by ultrasonic peening treatment (UPT) and that of as-welded joints, the subsection method is put forward for fatigue design of w...Concerning the notable difference between the S-N curve slope of welded joints treated by ultrasonic peening treatment (UPT) and that of as-welded joints, the subsection method is put forward for fatigue design of welded joints treated by UPT, using the design method of nominal S-N curves. Results show that, in medium life zone, strength grade of the fatigue design curves for UPT welded joints is two grades higher than that for as-welded joints. Furthermore, in medium life zone, strength grade of the fatigue design curves for UPT welded joints is three grades lower than that in long life zone. Conclusion of the comparison is that as for different joint types in different life zones, fatigue design should be processed according to different S-N curves respectively.展开更多
To better improve the lightweight and fatigue durability performance of the tractor cab,a multi-objective lightweight design of the cab was carried out in this study.First,the finite element model of the cab with coun...To better improve the lightweight and fatigue durability performance of the tractor cab,a multi-objective lightweight design of the cab was carried out in this study.First,the finite element model of the cab with counterweight loading was established and then confirmed by the physical testing,and use the inertial reliefmethod to obtain stress distribution under unit load.The cab-frame rigid-flexible couplingmulti-body dynamicsmodelwas built by Adams/car software.Taking the cab airbag mount displacement and acceleration signals acquired on the proving ground as the desired signals and obtaining the fatigue analysis load spectrum through Femfat-Lab virtual iteration.The fatigue simulation analysis is performed in nCode based on the Miner linear fatigue cumulative damage theory.Then,with themass and fatigue damage values as the optimization objectives,the bending-torsional stiffness and first-order bending-torsional mode as constraints,the thickness variables are screed based on the sensitivity analysis.The experimental design was carried out using the Optimal Latin hypercube method,and the multi-objective optimal design of the cab was carried out using theKriging approximationmodel fitting and particle swarmalgorithm.The weight of the optimized cab is reduced by 7.8%on the basis of meeting the fatigue durability performance.Finally,a seven-axis road simulation test rig was designed to verify its fatigue durability.The results show the optimized cab can consider both lightweight and durability.展开更多
This research is centered on the design of a low–cost cantilever loading rotating bending fatigue testing machine using locally sourced materials. The design principle was based on the adaptation of the technical the...This research is centered on the design of a low–cost cantilever loading rotating bending fatigue testing machine using locally sourced materials. The design principle was based on the adaptation of the technical theory of bending of elastic beams. Design drawings were produced and components/materials selections were based on functionality, durability, cost and local availability. The major parts of the machine: the machine main frame, the rotating shaft, the bearing and the bearing housing, the specimen clamping system, pulleys, speed counter, electric motor, and dead weights;were fabricated and then assembled following the design specifications. The machine performance was evaluated using test specimens which were machined in conformity with standard procedures. It was observed that the machine has the potentials of generating reliable bending stress – number of cycles data;and the cost of design (171,000 Naira) was lower in comparison to that of rotating bending machines from abroad. Also the machine has the advantages of ease of operation and maintenance, and is safe for use.展开更多
Fatigue design method is usually used for estimating whether a platform structure meets the requirements of fatigue resistance. It is described in API RP-2A and ZC rules for fixed offshore platforms, in which the allo...Fatigue design method is usually used for estimating whether a platform structure meets the requirements of fatigue resistance. It is described in API RP-2A and ZC rules for fixed offshore platforms, in which the allowable stresses for fatigue design are defined. In this paper discussed are the allowable stresses related factors, such as wave climate, structural response, fatigue behaviour of structural members.展开更多
In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loa...In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loaded journal bearings. The method makes it possible that dynamically loaded bearings can be desed as same as other machine elements by stress-strength criterion. The practical design results show that the method has high accuracy and reliability, and may open a new visa in bearing fatigue designs.展开更多
This paper studied the spot welding structure of ultra-high strength steel 22MnB5.ANSYS software was adopted to simulate its static strength;BS5400 algorithm was used to calculate the fatigue life;and the grouping met...This paper studied the spot welding structure of ultra-high strength steel 22MnB5.ANSYS software was adopted to simulate its static strength;BS5400 algorithm was used to calculate the fatigue life;and the grouping method was used to test the fatigue performance of tensile shear spot weld specimens.The simulation results were in good agreement with the experimental values.Based on the validation of the simulation method,influences of different structural parameters on static strength and fatigue life were explored by adopting single factor.The results showed that within the selected structure parameter range,increase of the sheet thickness,nugget diameter,sheet width and overlapping length can lead to longer fatigue life.Besides,the fatigue life of spot weld took on a linear relationship with the overlapping length,a DoseResp relationship with the sheet thickness,and a single exponential decay relationship with the sheet width and the nugget diameter.Moreover,in order to estimate the impact from various parameters on the fatigue life of the specimens,the Taguchi orthogonal design method was applied in the simulation design.The simulating result indicated that influence of the sheet thickness on fatigue life was the most significant.In addition,the effects of nugget diameter,sheet width and overlapping length on fatigue life were reduced in turn.展开更多
The presented article shows an estimation method of optimum autofrettage pressure taking into consideration subsequent cyclic loading. An autofrettage process is used in pressure vessel applications for strength impro...The presented article shows an estimation method of optimum autofrettage pressure taking into consideration subsequent cyclic loading. An autofrettage process is used in pressure vessel applications for strength improvement. The process relies on applying massive pressure that causes internal portions of the part to yield plastically, resulting in internal compressive residual stresses when pressure is released. Later applied working pressure (much lower than autofrettage pressure) creates stress reduced by the residual compressive stress improving the structural performance of the pressure vessels. The optimum autofrettage pressure is a load that maximizes the fatigue life of the structure at the working load. The estimation method of that pressure of a hydrogen valve is the subject of the presented work. Finite element and fatigue analyses were employed to investigate the presented problem. An automated model was developed to analyze the design for various autofrettage pressures. As the results of the procedure, the optimum autofrettage pressure is determined. The research has shown that the developed method can profitably investigate the complex parts giving the autofrettage load that maximizes the fatigue life. The findings suggest that the technique can be applied to a large group of products subjected to the autofrettage process.展开更多
This paper studies the effect of different environmental factors, including the axle load weight, environmental temperature, vehicle speed, and the aging level of asphalt, on the fatigue performance of asphalt mixes b...This paper studies the effect of different environmental factors, including the axle load weight, environmental temperature, vehicle speed, and the aging level of asphalt, on the fatigue performance of asphalt mixes based on four-point bending beam fatigue tests. A fractional factorial design method named "uniform design" was applied in experimental design. The relations of the environmental factors to initial stiffness, fatigue life, phase angle and cumulative dissipated energy were established with the general linear modeling method. It is found that there exists very good correlativity between the environmental factors and the fatigue performance indices of asphalt mixes. The coefficients of total correlation are mainly beyond 0. 95. The results indicate that the consideration of the effect of environmental factors is necessary in the fatigue performance evaluation on real asphalt pavement.展开更多
The design of the vertical stiffener details is important in the anti-fa- tigue design of the welded steel plate beams.There still exist different opinions on the selection of the design parameters and the effect of t...The design of the vertical stiffener details is important in the anti-fa- tigue design of the welded steel plate beams.There still exist different opinions on the selection of the design parameters and the effect of the shear stress.In the present study,the effects of the welding process(semi-automatic welding, manual welding)and the connecting location of vertical stiffener(welded to the web or to the flange)on the fatigue behaviour in the regions subjected to the pure bending and subjected to the bending and shearing are investigated by test- ing the simulation beams of large scale.The analysis of the fatigue test results shows that the normal bending stress is the governing factor to the fatigue strength.展开更多
Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the sim...Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the simulation results,the influence of valve bridge structure and roof transition fillet dimension on fatigue strength are obtained.And a new valve bridge structure which can effectively improve the fatigue life is proposed.展开更多
Traditionally, the use of a tuned mass damper (TMD) is to improve the surviability of the primary structure under extraordinary loading environment while the design loading condition is described by either a harmonic ...Traditionally, the use of a tuned mass damper (TMD) is to improve the surviability of the primary structure under extraordinary loading environment while the design loading condition is described by either a harmonic function or a stationary random process that can be fully characterized by a power spectral density (PSD) function. Aiming at prolonging the fatigue life of an offshore platform, this study considers an optimal design of TMD for the platform under long-term nonstationary loading due to long-term random sea waves characterized by a probabilistic power spectral density (PPSD) function In principle, a PPSD could be derived based on numerous ordinary PSD functions; and each of them is treated as realization of the corresponding PPSD. This study provides a theoretical development for the optimal TMD design by minimizing the cost function to be the mean square value of the expected long term response. A numerical example is presented to illustrate the developed design procedure.展开更多
文摘Some representative working conditions were measured, and the amplitude distribution rule of each representative working condition after analysis of measured data was got. The building of 2 D distributing function between the range and the mean of random load was discussed. Experiment was carried out to get the fatigue strength data of the material of transmission component. Accessing the P S a S m N camber of combined load of bending and torsion on this material after analysis. And the process of calculating the 2 D fatigue life in multi working condition was discussed.
基金Selected from Proceedings of the 7th International Conference on Frontiers of Design and Manufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50375130,No.50575189)+1 种基金Foundation for the Author of National Excellent Doctoral Dissertation of China(No.2002034)Program for New Century Excellent Talents in University,China(No.040890).
文摘A state-of-art review is given to the new advances on fatigue reliability design and analysis methods of Chinese railway vehicle's structures. First, the structures are subject to a complicated random fatigue stressing history and this history should be determined by combining dynamic simulation and on-line inspection. Second, the random fatigue constitutions belong to an intrinsic fatigue phenomenon and a probabilistic model is developed to well describe them with two measurements of survival probability and confidence, similar model is also presented for the random stress-life rela- tions and extrapolated appropriately into Song fatigue life regime. Third, concept of the fatigue limit should be understood as the fatigue strength at a given fatigue life and a so-called local Basquin model method is proposed for measuring the random strengths. In addition, drawing and application methods of the Goodman-Smith diagram for integrally characterizing the random fatigue strengths are established in terms of ten kilometers. Fourth, a reliability stress-based method is constructed with a consideration of the random constitutive relations. These new advances form a new frame work for railway fatigue reliability design and analysis.
基金supported by the Ministry of Education of China(No.208152)Gansu Natural Science Foundation(No.3ZS061-A52-47).
文摘The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading frequency, loading range and the parameters of fracture design for medium carbon steel on condition of extra-low axial fatigue loading were discussed based on the experiments. Experimental results indicated that the tension-pressure fatigue loading mode was suitable for extra-low cyclic fatigue fracture design of medium carbon steel and it resulted in low energy consumption, fracture surface with high quality, low cycle times, and high efficiency. The appropriate parameters were as follows: loading frequency 3-5 Hz, notch tip radius r = (0.2-0.3) mm, opening angle α = 60°, and notch depth t = (0.14-0.17)D.
文摘Various micro-mechanical and micro-structural influences on fatigue crack growth resistance of the material have been investigated over the years. It is widely recognized that resistance to fatigue crack growth can be differentiated into ‘intrinsic' and ‘extrinsic'. The separation of intrinsic and extrinsic crack growth resistance has constituted a major theme of fatigue research in the last 30 years, with the concept of crack closure or crack tip shielding being used to rationalize a wide range of micro-structural and mechanical influences on fatigue crack growth behavior. An accurately quantitative understanding of intrinsic and extrinsic effects on crack growth is essential to directed alloy design for improved fatigue resistance, and/or improved structural service life. This paper presents a compliance-based crack closure measurement method and a multi-mechanism based analytical model for the separation of intrinsic and extrinsic material fatigue resistance, with application in characterizing the fatigue performance of two high strength damage tolerant airframe AI alloys.
文摘Concerning the notable difference between the S-N curve slope of welded joints treated by ultrasonic peening treatment (UPT) and that of as-welded joints, the subsection method is put forward for fatigue design of welded joints treated by UPT, using the design method of nominal S-N curves. Results show that, in medium life zone, strength grade of the fatigue design curves for UPT welded joints is two grades higher than that for as-welded joints. Furthermore, in medium life zone, strength grade of the fatigue design curves for UPT welded joints is three grades lower than that in long life zone. Conclusion of the comparison is that as for different joint types in different life zones, fatigue design should be processed according to different S-N curves respectively.
基金supported in part by the Science and Technology Major Project of Guangxi under Grants AA18242033 and AA19182004in part by the Key Research andDevelopment Program of Guangxi AB21196029+3 种基金in part by the Scientific Research and Technology Development in Liuzhou 2020GAAA0404,2021AAA0104 and 2021AAA0112in part by the Guangxi Higher Education Undergraduate Teaching Reform Project Grant 2021JGA180in part by the GUET Education Undergraduate Teaching Reform Project Grant JGB202002in part by the Innovation Project of GUET Graduate Education (2022YCXS017).
文摘To better improve the lightweight and fatigue durability performance of the tractor cab,a multi-objective lightweight design of the cab was carried out in this study.First,the finite element model of the cab with counterweight loading was established and then confirmed by the physical testing,and use the inertial reliefmethod to obtain stress distribution under unit load.The cab-frame rigid-flexible couplingmulti-body dynamicsmodelwas built by Adams/car software.Taking the cab airbag mount displacement and acceleration signals acquired on the proving ground as the desired signals and obtaining the fatigue analysis load spectrum through Femfat-Lab virtual iteration.The fatigue simulation analysis is performed in nCode based on the Miner linear fatigue cumulative damage theory.Then,with themass and fatigue damage values as the optimization objectives,the bending-torsional stiffness and first-order bending-torsional mode as constraints,the thickness variables are screed based on the sensitivity analysis.The experimental design was carried out using the Optimal Latin hypercube method,and the multi-objective optimal design of the cab was carried out using theKriging approximationmodel fitting and particle swarmalgorithm.The weight of the optimized cab is reduced by 7.8%on the basis of meeting the fatigue durability performance.Finally,a seven-axis road simulation test rig was designed to verify its fatigue durability.The results show the optimized cab can consider both lightweight and durability.
文摘This research is centered on the design of a low–cost cantilever loading rotating bending fatigue testing machine using locally sourced materials. The design principle was based on the adaptation of the technical theory of bending of elastic beams. Design drawings were produced and components/materials selections were based on functionality, durability, cost and local availability. The major parts of the machine: the machine main frame, the rotating shaft, the bearing and the bearing housing, the specimen clamping system, pulleys, speed counter, electric motor, and dead weights;were fabricated and then assembled following the design specifications. The machine performance was evaluated using test specimens which were machined in conformity with standard procedures. It was observed that the machine has the potentials of generating reliable bending stress – number of cycles data;and the cost of design (171,000 Naira) was lower in comparison to that of rotating bending machines from abroad. Also the machine has the advantages of ease of operation and maintenance, and is safe for use.
文摘Fatigue design method is usually used for estimating whether a platform structure meets the requirements of fatigue resistance. It is described in API RP-2A and ZC rules for fixed offshore platforms, in which the allowable stresses for fatigue design are defined. In this paper discussed are the allowable stresses related factors, such as wave climate, structural response, fatigue behaviour of structural members.
文摘In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loaded journal bearings. The method makes it possible that dynamically loaded bearings can be desed as same as other machine elements by stress-strength criterion. The practical design results show that the method has high accuracy and reliability, and may open a new visa in bearing fatigue designs.
基金financially supported by the Beijing Natural Science Foundation(3122004)
文摘This paper studied the spot welding structure of ultra-high strength steel 22MnB5.ANSYS software was adopted to simulate its static strength;BS5400 algorithm was used to calculate the fatigue life;and the grouping method was used to test the fatigue performance of tensile shear spot weld specimens.The simulation results were in good agreement with the experimental values.Based on the validation of the simulation method,influences of different structural parameters on static strength and fatigue life were explored by adopting single factor.The results showed that within the selected structure parameter range,increase of the sheet thickness,nugget diameter,sheet width and overlapping length can lead to longer fatigue life.Besides,the fatigue life of spot weld took on a linear relationship with the overlapping length,a DoseResp relationship with the sheet thickness,and a single exponential decay relationship with the sheet width and the nugget diameter.Moreover,in order to estimate the impact from various parameters on the fatigue life of the specimens,the Taguchi orthogonal design method was applied in the simulation design.The simulating result indicated that influence of the sheet thickness on fatigue life was the most significant.In addition,the effects of nugget diameter,sheet width and overlapping length on fatigue life were reduced in turn.
文摘The presented article shows an estimation method of optimum autofrettage pressure taking into consideration subsequent cyclic loading. An autofrettage process is used in pressure vessel applications for strength improvement. The process relies on applying massive pressure that causes internal portions of the part to yield plastically, resulting in internal compressive residual stresses when pressure is released. Later applied working pressure (much lower than autofrettage pressure) creates stress reduced by the residual compressive stress improving the structural performance of the pressure vessels. The optimum autofrettage pressure is a load that maximizes the fatigue life of the structure at the working load. The estimation method of that pressure of a hydrogen valve is the subject of the presented work. Finite element and fatigue analyses were employed to investigate the presented problem. An automated model was developed to analyze the design for various autofrettage pressures. As the results of the procedure, the optimum autofrettage pressure is determined. The research has shown that the developed method can profitably investigate the complex parts giving the autofrettage load that maximizes the fatigue life. The findings suggest that the technique can be applied to a large group of products subjected to the autofrettage process.
文摘This paper studies the effect of different environmental factors, including the axle load weight, environmental temperature, vehicle speed, and the aging level of asphalt, on the fatigue performance of asphalt mixes based on four-point bending beam fatigue tests. A fractional factorial design method named "uniform design" was applied in experimental design. The relations of the environmental factors to initial stiffness, fatigue life, phase angle and cumulative dissipated energy were established with the general linear modeling method. It is found that there exists very good correlativity between the environmental factors and the fatigue performance indices of asphalt mixes. The coefficients of total correlation are mainly beyond 0. 95. The results indicate that the consideration of the effect of environmental factors is necessary in the fatigue performance evaluation on real asphalt pavement.
文摘The design of the vertical stiffener details is important in the anti-fa- tigue design of the welded steel plate beams.There still exist different opinions on the selection of the design parameters and the effect of the shear stress.In the present study,the effects of the welding process(semi-automatic welding, manual welding)and the connecting location of vertical stiffener(welded to the web or to the flange)on the fatigue behaviour in the regions subjected to the pure bending and subjected to the bending and shearing are investigated by test- ing the simulation beams of large scale.The analysis of the fatigue test results shows that the normal bending stress is the governing factor to the fatigue strength.
基金Supported by the National Basic Research Program of China(613570303)
文摘Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the simulation results,the influence of valve bridge structure and roof transition fillet dimension on fatigue strength are obtained.And a new valve bridge structure which can effectively improve the fatigue life is proposed.
基金JSPS RONPAKU program of JapanPh.D.education fund from Ministry of Education of China
文摘Traditionally, the use of a tuned mass damper (TMD) is to improve the surviability of the primary structure under extraordinary loading environment while the design loading condition is described by either a harmonic function or a stationary random process that can be fully characterized by a power spectral density (PSD) function. Aiming at prolonging the fatigue life of an offshore platform, this study considers an optimal design of TMD for the platform under long-term nonstationary loading due to long-term random sea waves characterized by a probabilistic power spectral density (PPSD) function In principle, a PPSD could be derived based on numerous ordinary PSD functions; and each of them is treated as realization of the corresponding PPSD. This study provides a theoretical development for the optimal TMD design by minimizing the cost function to be the mean square value of the expected long term response. A numerical example is presented to illustrate the developed design procedure.