Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tes...Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.展开更多
Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cr...Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cracks. Crack growth mechanisms and microstructural influences were investigated by optical and scanning electron microscopy (SEM) as well as energy dispersive X-ray spectroscopy (EDS). Thermal fatigue behaviors were observed to improve successively by addition of the RE up to 2wt.%. This improvement was attributed to the consummation of aluminum in melt by precipitation of the needle shaped AII1RE3 phases. This process was attributed to the reduction of MglTAl12 phase volume fraction and consequent decrease of the brittle Mg/MglTAl12 interface which was the main reason for weak thermal properties of the alloy at rather high temperatures. Further additions of RE, however, reduced the thermal shock resistance of the samples by increasing the mean length of the brittle needle shaped phases.展开更多
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc...The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.展开更多
Thermal fatigue checking is the general failure of hot work die steels, which is relative with the structures and properties of the steels and the stress alternated during the employment. The Uddeholm test method on t...Thermal fatigue checking is the general failure of hot work die steels, which is relative with the structures and properties of the steels and the stress alternated during the employment. The Uddeholm test method on thermal fatigue is used to compare the behaviors of different samples, which are treated with plasma nitriding、plasma sulfur carbon nitriding、boronizing or not treated. The results show that the nitriding improves the thermal fatigue property of the tool steel, while the plasma sulfur carbon nitriding and the boronizing impair the property. The mechanisms are induced as follows. By increasing the hardness and changing the stress distribution in the surface layer, surface treatment can decrease the plastic deformation and the tensile stress during the cycling. Therefore, the generation and growth of the cracks are restrained. On the other hand, as results of surface treating, in the surface layer the toughness declines and the expanding coefficient ascendes; the latter change caused the strengthening of the tensile and compressive stress during the cycling. Thus the resistance to thermal fatigue is weakened. Whether or not the surface treatment is favor to thermal fatigue of tool steels relies on which factor is dominant.展开更多
This article presents the fatigue crack growth (FCG) behaviors of a new bum-resistant highly-stabilized beta Ti40 alloy. The FCG rates were analyzed. The fracture surfaces and the side surfaces of the test samples w...This article presents the fatigue crack growth (FCG) behaviors of a new bum-resistant highly-stabilized beta Ti40 alloy. The FCG rates were analyzed. The fracture surfaces and the side surfaces of the test samples were explored. The results show that frequency affects the cracking behaviors of Ti40 alloy. Temperature also plays an important role in Ti40 alloy cracking. At room temperature (25℃), when the frequency increases, the cracking rate changes a little in the range of low stress intensity factor (△K), while it changes significantly when △K is high. At 500℃, the cracking rate of Ti40 alloy changes significantly during all the course of cracking. The fi'equency also affects the microstructure patterns of Ti40 alloy. A number of secondary cracks appear in the area more than 200μm from the main crack at a high △K when the frequency is 1 Hz, but only a few secondary cracks exist when the frequency is 10 Hz. Facet image is the main image of the fracture surfaces when the frequency is 1 Hz. While, ductile striation occupies most of the area of fracture surfaces when the frequency is 10 Hz.展开更多
The relationship between microstructure and tensile behaviors of fatigued AZ31 magnesium alloy was investigated. Axial fatigue tests were performed on PLG-100 fatigue machine at stresses of 50 and 90 MPa. Tensile samp...The relationship between microstructure and tensile behaviors of fatigued AZ31 magnesium alloy was investigated. Axial fatigue tests were performed on PLG-100 fatigue machine at stresses of 50 and 90 MPa. Tensile samples were cut from the fatigued samples, named as L-sample and H-sample respectively, and the O-sample was cut from original rolled AZ31 alloy. The EBSD and TEM were used to characterize the microstructure. It is found that the twinning-detwinning was the main deformation mechanism in high stress fatigue test, while dislocation slipping was dominant in low stress fatigue test. After fatigue tests, the average grain size of the L-sample and H-sample decreased to 4.71 and 5.33 μm, and the tensile and yield strength of the L-sample and H-sample increased slightly. By analyzing SEM images, the ultimate fracture region of the L-sample consisted of dimples, while there were many microvoids in the ultimate fracture region of the H-sample. Consequently, the tensile behaviors of fatigued magnesium have a close relationship with microstructure.展开更多
Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The eff...Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The effects of stress disturbances on rock geomechanical behaviors under fatigue loading conditions and triaxial unloading conditions have been reported in previous studies.However,little is known about the dependence of the unloading rate on fatigue loading and confining stress unloading(FL-CSU)conditions that influence rock failure.In this paper,we aimed at investigating the fracture behaviors of marble under FL-CSU conditions using the post-test X-ray computed tomography(CT)scanning technique and the GCTS RTR 2000 rock mechanics system.Results show that damage accumulation at the fatigue stage can influence the final fracture behaviors of marble.The stored elastic energy for rock samples under FL-CSU tests is relatively larger compared to those under conventional triaxial tests,and the dissipated energy used to drive damage evolution and crack propagation is larger for FL-CSU tests.In FL-CSU tests,as the unloading rate increases,the dissipated energy grows and elastic energy reduces.CT scanning after the test reveals the impacts of the unloading rate on the crack pattern and a fracture degree index is therein defined in this context to represent the crack dimension.It shows that the crack pattern after FL-CSU tests depends on the unloading rate,and the fracture degree is in agreement with the analysis of both the energy dissipation and the amount of energy released.The effect of unloading rate on fracture evolution characteristics of marble is revealed by a series of FL-CSU tests.展开更多
Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation ...Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation mechanism keeps the same and results in a single-faceted morphology at crack initiation site.Microcracks initiate as Mode Ⅱ crack within the original grain,but deflect to Mode I crack outside of the original cracked grain.A threshold SIF value is proposed to evaluate the retarding effect of grain boundary on microcrack propagation.Outside of the original cracked grain,Mode I crack propagation below the threshold ΔK_(σ-th) is responsible for the formation of fine granular area(FGA,a nano-grain layer).Based on the Numerous Cyclic Pressing(NCP) model,it is proposed that crack type should be another necessary condition for the formation of FGA.展开更多
The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composit...The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.展开更多
Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengthes were experimentally studied by rotating bending tests,to investigate the effects of the tensile strength obtained by different heat t...Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengthes were experimentally studied by rotating bending tests,to investigate the effects of the tensile strength obtained by different heat treatment processes on very high cycle fatigue failure mechanisms.The material with higher tensile strength of 1 710 MPa exhibited typical gigacycle fatigue failure characteristics,whereas one with lower tensile strength of 1 010 MPa showed only traditional fatigue limit during the tests and no gigacycle failure could be found even when the specimen ran up to more than 10 8 cycles.Metallographic and fractographic analysis were carried out by an optical microscope (OM) and scanning electron microscope (SEM).It showed two different crack initiation mechanisms that for the specimen with lower tensile strength the crack prefers surface initiation and for that with higher strength the crack initiates from subsurface inclusions revealed by a fish-eye like microstructure.展开更多
In this paper,the microstructures and rolling contact fatigue behaviors of laser cladding Inconel 625 coatings with or without post-heat treatments were analyzed.The results revealed that the fatigue resistance of the...In this paper,the microstructures and rolling contact fatigue behaviors of laser cladding Inconel 625 coatings with or without post-heat treatments were analyzed.The results revealed that the fatigue resistance of the laser cladding coating after any post-heat treatment was worse than that of the as-deposited coating.First,through the finite element analysis,the distribution of stress along the thickness direction of the coating was obtained,and it was concluded that the bonding interface between the coating and the matrix had little effect on the fatigue properties of the coating.Then X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS)were used to analyze the microstructure and failure morphology.The results revealed that the subsurface failure morphology of the coatings showed a consistent correlation with rolling fatigue property after different heat treatments.The TCP phase and carbides have been shown in the laser cladding coating.The coating after stress relieved annealing exhibited chain-shaped granular carbides on the grain boundaries which could accelerate crack propagation.The aging heat treatment made small amounts of Laves phase dissolved in the coating,while the dispersed phase was precipitated which could result in the formation of pores.And the solution treatment made large amounts of Laves phase dissolved,while the rod-shape brittle phases were generated which was easy to fracture and contribute to crack initiation and spalling.展开更多
The initiation and propagation of thermal fatigue cracks in gray cast iron and vemicular graphite cast iron were investigated by Uddeholm method to reveal the complex thermal fatigue behaviors of cast iron.Differences...The initiation and propagation of thermal fatigue cracks in gray cast iron and vemicular graphite cast iron were investigated by Uddeholm method to reveal the complex thermal fatigue behaviors of cast iron.Differences of thermal fatigue behaviors of gray cast iron and vemicular graphite cast iron were observed and analyzed.It is found that the observed differences are related to the combination of graphite morphology and the oxidization of matrix.More oxidized matrix is observed in gray cast iron due to its large specific surface area.The brittle oxidized matrix facilitates the propagation of microcracks along the oxidization layer.By contrast,the radial microcracks are formed in vermicular graphite at the edge of graphite due to fewer oxidization layers.It indicates that the thermal fatigue resistance of gray cast iron is dominated by graphite content and morphology while that of vermicular graphite cast iron strongly relates to the strength of the matrix.展开更多
Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, a...Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, and the changes in fatigue life behavior and fatigue growth rates with increasing temperature were discussed. The different properties of the base metal and its weld joint have been analyzed.展开更多
The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400...The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400 MPa, and hydrogen embrittlement had little influence even though the sample contained about 8.1 times more hydrogen. Thus, the sensitivity of hydrogen gas in this material is very low. A surface crack initiation, growth, coalescence, and micro ridge model is proposed in this study. Slip line formation?⇒microcrack formation?⇒increases in the crack width, and blunting of the crack tip as it grows?⇒formation of many slip lines because of deformation in the shear direction?⇒growth of the crack in the shear direction, forming micro ridges, coalescence with adjacent cracks ⇒?continuous initiation, growth, coalescence, and ridge formation of surface cracks and specimen breakage.展开更多
Random fatigue of welded K-type tubular joints subjected to axial or out-of-plane bending load is analyzed. By considering the sizes of initial surface cracks and material constants as random variables with some proba...Random fatigue of welded K-type tubular joints subjected to axial or out-of-plane bending load is analyzed. By considering the sizes of initial surface cracks and material constants as random variables with some probabilistic distributions, incorporating the effect of the weld, five hundred random samples are generated. Statistical computational results of life of crack propagation and effect of change of crack shape are finally obtained and compared with experimental data available based on a regression analysis. Meanwhile, crack propagation behaviors are also investigated.展开更多
Objective: To observe the effects of warm acupuncture on “Dinghui Acupoint” and “Heart Acupoint” in Traditional Mongolian Medicine on behavior and hypothalamic inflammatory cytokines IL-1β, IL-6 and IFN-r in Rats...Objective: To observe the effects of warm acupuncture on “Dinghui Acupoint” and “Heart Acupoint” in Traditional Mongolian Medicine on behavior and hypothalamic inflammatory cytokines IL-1β, IL-6 and IFN-r in Rats with Chronic Fatigue Syndrome. Methods: SD rats were randomly divided into normal group, model group, warm acupuncture group and moxibustion positive control group. The latter three groups of rats were used to establish a model of rats with chronic fatigue syndrome (CFS) using a combination of physical fatigue and mental fatigue. When establishing the model of warm acupuncture group,“Dinghui Acupoint” and “Heart Acupoint” intervention was carried out;when establishing the model of moxibustion positive control group,“Zusanli Acupoint” intervention was carried out on both sides. Behavioral observations (body weight, exhaustive swimming time, tail suspension experiment, water maze) were performed before and after modeling. The hypothalamic inflammatory cytokines IL-1β, IL-6 and IFN-r were detected by ELISA method after warm acupuncture and moxibustion intervention. Results: After 21 days of modeling, the body weight of the rats in each group was significantly lower than that in the normal group, and there was a significant difference (P<0.01);Compared with the model group, the weight of the rats in the warm acupuncture group increased significantly, and there was a significant difference (P<0.01);Compared with the model group, the exhaustive swimming time of the rats in the warm acupuncture group was significantly prolonged, and there was a significant difference (P<0.01);Compared with the moxibustion group, the exhaustion time of the rats in the warm acupuncture group was relatively prolonged, and there was a significant difference (P<0.05);Compared with the normal group, the tail suspension time of the model group was significantly prolonged, and there was a significant difference (P<0.05);Compared with the model group, there was a significant difference in the duration of the suspension of the warm acupuncture group and the moxibustion group (P<0.01);Compared with the normal group, the total distance of the water maze test was shorter in the model group, and there was a significant difference (P<0.01);Compared with the model group, both the warm acupuncture group and the moxibustion group were prolonged, and there was a significant difference (P<0.05);Compared with the moxibustion group, the distance between the rats in the warm acupuncture group was relatively longer, but there was no significant difference (P>0.05);Compared with the normal group, IL-1β, IL-6 and IFN-r increased significantly in the model group and there was a significant difference (P<0.05);Compared with the model group, IL- 1β and IL-6 in the warm acupuncture group was significantly decreased (P<0.05), and the IL-6 in the moxibustion group was significantly different (P<0.05);Compared with the model group, there was no significant difference between the IFN-r group and the moxibustion group (P>0.05);Compared with the moxibustion group, the levels of IL-1β, IL-6 and IFN-r were not significantly different (P>0.05). Conclusion: Warm acupuncture on “Dinghui Acupoint” and “Heart Acupoint” in Traditional Mongolian Medicine has the ability to improve the body’s defense and self-healing ability, improve chronic fatigue syndrome (CFS), and thus play a preventive role. The results of this research indicate that the warm acupuncture group and the moxibustion group have the same effect.展开更多
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t...The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.展开更多
BACKGROUND Patients not only experience symptoms caused by cancer but also suffer from the accompanying psychological pain.Therefore,these patients do not have high quality of life.According to the World Health Organi...BACKGROUND Patients not only experience symptoms caused by cancer but also suffer from the accompanying psychological pain.Therefore,these patients do not have high quality of life.According to the World Health Organization,the incidence of leukemia in China in 2020 was 5.1/100000,the mortality rate was 3.3/100000,and the prevalence rate was 16.7/100000.Therefore,it is important to examine the influence of comorbid subthreshold depressive symptoms on leukemia patients.AIM To determine the impact of comorbid subthreshold depressive symptoms on cancer-related fatigue and complications in leukemia patients,thereby providing a basis for early diagnosis and treatment in clinical practice.METHODS A questionnaire survey was conducted among leukemia patients admitted to a tertiary hospital in Xi'an,Shaanxi Province,China,from August 2022 to December 2023.Patients with a score>16 on the Chinese Classification of Mental Disorders(CCMD-3)and a Hamilton Depression Rating Scale score of 8-17 were classified as the subthreshold depressive group(n=95),while 100 leukemia patients admitted during the same period were classified as the control group.Data were collected using Epidata 3.1 software,and comparisons were made between the two groups regarding general clinical data,the Piper Fatigue Scale(PFS),the Pittsburgh Sleep Quality Index(PSQI),the Numeric Rating Scale for pain assessment,laboratory indicators,and the occurrence of complications.RESULTS In this survey,120 leukemia patients with depression were preliminarily screened,95 patients with subthreshold depression were ultimately selected as the subthreshold depression group,and 100 leukemia patients admitted during the same period were enrolled as the normal group.Comparison of basic clinical data between the two groups revealed no significant differences in age,sex,body mass index,cognitive function,or comorbidity with other chronic diseases.However,there were statistically significant differences in the use of radiotherapy and regular exercise between the two groups(P<0.05).Comparisons of scales and laboratory indicators revealed no significant differences in albumin or PSQI scores between the two groups,but there were statistically significant differences in pain scores,PSQI scores,PFS scores,hemoglobin levels,and C-reactive protein levels(P<0.05).Spearman’s correlation analysis indicated that cancer-related fatigue was correlated with age,hemoglobin levels,C-reactive protein levels,pain,and regular exercise among leukemia patients with subthreshold depression.Multivariate regression analysis revealed that advanced age,combined radiotherapy,pain,and low hemoglobin levels were risk factors for cancer-related fatigue in leukemia patients with comorbid subthreshold depression,while regular exercise was a protective factor against cancer-related fatigue.Follow-up comparisons revealed a significantly lower overall incidence of complications in the control group(4%)than in the depressive group(24.21%;P<0.001).CONCLUSION Leukemia patients with comorbid subthreshold depressive symptoms experience more severe cancer-related fatigue and a higher incidence of complications.These findings may be related to advanced age,combined radiotherapy,pain,and low hemoglobin levels,while regular exercise may effectively alleviate symptoms.展开更多
基金the National Natural Science Foundation of China(Nos.52175143 and 51571150)。
文摘Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.
文摘Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cracks. Crack growth mechanisms and microstructural influences were investigated by optical and scanning electron microscopy (SEM) as well as energy dispersive X-ray spectroscopy (EDS). Thermal fatigue behaviors were observed to improve successively by addition of the RE up to 2wt.%. This improvement was attributed to the consummation of aluminum in melt by precipitation of the needle shaped AII1RE3 phases. This process was attributed to the reduction of MglTAl12 phase volume fraction and consequent decrease of the brittle Mg/MglTAl12 interface which was the main reason for weak thermal properties of the alloy at rather high temperatures. Further additions of RE, however, reduced the thermal shock resistance of the samples by increasing the mean length of the brittle needle shaped phases.
文摘The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.
文摘Thermal fatigue checking is the general failure of hot work die steels, which is relative with the structures and properties of the steels and the stress alternated during the employment. The Uddeholm test method on thermal fatigue is used to compare the behaviors of different samples, which are treated with plasma nitriding、plasma sulfur carbon nitriding、boronizing or not treated. The results show that the nitriding improves the thermal fatigue property of the tool steel, while the plasma sulfur carbon nitriding and the boronizing impair the property. The mechanisms are induced as follows. By increasing the hardness and changing the stress distribution in the surface layer, surface treatment can decrease the plastic deformation and the tensile stress during the cycling. Therefore, the generation and growth of the cracks are restrained. On the other hand, as results of surface treating, in the surface layer the toughness declines and the expanding coefficient ascendes; the latter change caused the strengthening of the tensile and compressive stress during the cycling. Thus the resistance to thermal fatigue is weakened. Whether or not the surface treatment is favor to thermal fatigue of tool steels relies on which factor is dominant.
文摘This article presents the fatigue crack growth (FCG) behaviors of a new bum-resistant highly-stabilized beta Ti40 alloy. The FCG rates were analyzed. The fracture surfaces and the side surfaces of the test samples were explored. The results show that frequency affects the cracking behaviors of Ti40 alloy. Temperature also plays an important role in Ti40 alloy cracking. At room temperature (25℃), when the frequency increases, the cracking rate changes a little in the range of low stress intensity factor (△K), while it changes significantly when △K is high. At 500℃, the cracking rate of Ti40 alloy changes significantly during all the course of cracking. The fi'equency also affects the microstructure patterns of Ti40 alloy. A number of secondary cracks appear in the area more than 200μm from the main crack at a high △K when the frequency is 1 Hz, but only a few secondary cracks exist when the frequency is 10 Hz. Facet image is the main image of the fracture surfaces when the frequency is 1 Hz. While, ductile striation occupies most of the area of fracture surfaces when the frequency is 10 Hz.
基金Projects(51271208,51071183,50890170)supported by the National Natural Science Foundation of ChinaProject(2010CB631004)supported by the National Basic Research Program of China
文摘The relationship between microstructure and tensile behaviors of fatigued AZ31 magnesium alloy was investigated. Axial fatigue tests were performed on PLG-100 fatigue machine at stresses of 50 and 90 MPa. Tensile samples were cut from the fatigued samples, named as L-sample and H-sample respectively, and the O-sample was cut from original rolled AZ31 alloy. The EBSD and TEM were used to characterize the microstructure. It is found that the twinning-detwinning was the main deformation mechanism in high stress fatigue test, while dislocation slipping was dominant in low stress fatigue test. After fatigue tests, the average grain size of the L-sample and H-sample decreased to 4.71 and 5.33 μm, and the tensile and yield strength of the L-sample and H-sample increased slightly. By analyzing SEM images, the ultimate fracture region of the L-sample consisted of dimples, while there were many microvoids in the ultimate fracture region of the H-sample. Consequently, the tensile behaviors of fatigued magnesium have a close relationship with microstructure.
基金The authors would like to thank the editors and the anonymous reviewers for their helpful and constructive comments.This study was supported by National Key Technologies Research&Development Program(Grant No.2018YFC0808402)State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK1824)the Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-20-004A2).
文摘Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The effects of stress disturbances on rock geomechanical behaviors under fatigue loading conditions and triaxial unloading conditions have been reported in previous studies.However,little is known about the dependence of the unloading rate on fatigue loading and confining stress unloading(FL-CSU)conditions that influence rock failure.In this paper,we aimed at investigating the fracture behaviors of marble under FL-CSU conditions using the post-test X-ray computed tomography(CT)scanning technique and the GCTS RTR 2000 rock mechanics system.Results show that damage accumulation at the fatigue stage can influence the final fracture behaviors of marble.The stored elastic energy for rock samples under FL-CSU tests is relatively larger compared to those under conventional triaxial tests,and the dissipated energy used to drive damage evolution and crack propagation is larger for FL-CSU tests.In FL-CSU tests,as the unloading rate increases,the dissipated energy grows and elastic energy reduces.CT scanning after the test reveals the impacts of the unloading rate on the crack pattern and a fracture degree index is therein defined in this context to represent the crack dimension.It shows that the crack pattern after FL-CSU tests depends on the unloading rate,and the fracture degree is in agreement with the analysis of both the energy dissipation and the amount of energy released.The effect of unloading rate on fracture evolution characteristics of marble is revealed by a series of FL-CSU tests.
基金supported by the National Natural Science Foundation of China (Nos. 12102280, 12172238, 11832007, 12022208, 12072212, and 52003181)the Science & Technology Support Program of Sichuan Province (Nos. 2020YJ0230, and 2021YJ0555)the Fundamental Research Funds for the Central Universities of China (No.2021SCU12129)
文摘Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation mechanism keeps the same and results in a single-faceted morphology at crack initiation site.Microcracks initiate as Mode Ⅱ crack within the original grain,but deflect to Mode I crack outside of the original cracked grain.A threshold SIF value is proposed to evaluate the retarding effect of grain boundary on microcrack propagation.Outside of the original cracked grain,Mode I crack propagation below the threshold ΔK_(σ-th) is responsible for the formation of fine granular area(FGA,a nano-grain layer).Based on the Numerous Cyclic Pressing(NCP) model,it is proposed that crack type should be another necessary condition for the formation of FGA.
文摘The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.
基金supported by funds of MHI Corporation,the National Natural Science Foundation of China (10872105)
文摘Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengthes were experimentally studied by rotating bending tests,to investigate the effects of the tensile strength obtained by different heat treatment processes on very high cycle fatigue failure mechanisms.The material with higher tensile strength of 1 710 MPa exhibited typical gigacycle fatigue failure characteristics,whereas one with lower tensile strength of 1 010 MPa showed only traditional fatigue limit during the tests and no gigacycle failure could be found even when the specimen ran up to more than 10 8 cycles.Metallographic and fractographic analysis were carried out by an optical microscope (OM) and scanning electron microscope (SEM).It showed two different crack initiation mechanisms that for the specimen with lower tensile strength the crack prefers surface initiation and for that with higher strength the crack initiates from subsurface inclusions revealed by a fish-eye like microstructure.
基金This work was financially supported by the National Natural Science Foundation of China(No.51875425)Open Fund of Shandong Key Laboratory of Corrosion Science(No.KLCS201907).
文摘In this paper,the microstructures and rolling contact fatigue behaviors of laser cladding Inconel 625 coatings with or without post-heat treatments were analyzed.The results revealed that the fatigue resistance of the laser cladding coating after any post-heat treatment was worse than that of the as-deposited coating.First,through the finite element analysis,the distribution of stress along the thickness direction of the coating was obtained,and it was concluded that the bonding interface between the coating and the matrix had little effect on the fatigue properties of the coating.Then X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS)were used to analyze the microstructure and failure morphology.The results revealed that the subsurface failure morphology of the coatings showed a consistent correlation with rolling fatigue property after different heat treatments.The TCP phase and carbides have been shown in the laser cladding coating.The coating after stress relieved annealing exhibited chain-shaped granular carbides on the grain boundaries which could accelerate crack propagation.The aging heat treatment made small amounts of Laves phase dissolved in the coating,while the dispersed phase was precipitated which could result in the formation of pores.And the solution treatment made large amounts of Laves phase dissolved,while the rod-shape brittle phases were generated which was easy to fracture and contribute to crack initiation and spalling.
文摘The initiation and propagation of thermal fatigue cracks in gray cast iron and vemicular graphite cast iron were investigated by Uddeholm method to reveal the complex thermal fatigue behaviors of cast iron.Differences of thermal fatigue behaviors of gray cast iron and vemicular graphite cast iron were observed and analyzed.It is found that the observed differences are related to the combination of graphite morphology and the oxidization of matrix.More oxidized matrix is observed in gray cast iron due to its large specific surface area.The brittle oxidized matrix facilitates the propagation of microcracks along the oxidization layer.By contrast,the radial microcracks are formed in vermicular graphite at the edge of graphite due to fewer oxidization layers.It indicates that the thermal fatigue resistance of gray cast iron is dominated by graphite content and morphology while that of vermicular graphite cast iron strongly relates to the strength of the matrix.
文摘Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, and the changes in fatigue life behavior and fatigue growth rates with increasing temperature were discussed. The different properties of the base metal and its weld joint have been analyzed.
文摘The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400 MPa, and hydrogen embrittlement had little influence even though the sample contained about 8.1 times more hydrogen. Thus, the sensitivity of hydrogen gas in this material is very low. A surface crack initiation, growth, coalescence, and micro ridge model is proposed in this study. Slip line formation?⇒microcrack formation?⇒increases in the crack width, and blunting of the crack tip as it grows?⇒formation of many slip lines because of deformation in the shear direction?⇒growth of the crack in the shear direction, forming micro ridges, coalescence with adjacent cracks ⇒?continuous initiation, growth, coalescence, and ridge formation of surface cracks and specimen breakage.
文摘Random fatigue of welded K-type tubular joints subjected to axial or out-of-plane bending load is analyzed. By considering the sizes of initial surface cracks and material constants as random variables with some probabilistic distributions, incorporating the effect of the weld, five hundred random samples are generated. Statistical computational results of life of crack propagation and effect of change of crack shape are finally obtained and compared with experimental data available based on a regression analysis. Meanwhile, crack propagation behaviors are also investigated.
基金National Natural Science Foundation of China (Project No.: 81560802).
文摘Objective: To observe the effects of warm acupuncture on “Dinghui Acupoint” and “Heart Acupoint” in Traditional Mongolian Medicine on behavior and hypothalamic inflammatory cytokines IL-1β, IL-6 and IFN-r in Rats with Chronic Fatigue Syndrome. Methods: SD rats were randomly divided into normal group, model group, warm acupuncture group and moxibustion positive control group. The latter three groups of rats were used to establish a model of rats with chronic fatigue syndrome (CFS) using a combination of physical fatigue and mental fatigue. When establishing the model of warm acupuncture group,“Dinghui Acupoint” and “Heart Acupoint” intervention was carried out;when establishing the model of moxibustion positive control group,“Zusanli Acupoint” intervention was carried out on both sides. Behavioral observations (body weight, exhaustive swimming time, tail suspension experiment, water maze) were performed before and after modeling. The hypothalamic inflammatory cytokines IL-1β, IL-6 and IFN-r were detected by ELISA method after warm acupuncture and moxibustion intervention. Results: After 21 days of modeling, the body weight of the rats in each group was significantly lower than that in the normal group, and there was a significant difference (P<0.01);Compared with the model group, the weight of the rats in the warm acupuncture group increased significantly, and there was a significant difference (P<0.01);Compared with the model group, the exhaustive swimming time of the rats in the warm acupuncture group was significantly prolonged, and there was a significant difference (P<0.01);Compared with the moxibustion group, the exhaustion time of the rats in the warm acupuncture group was relatively prolonged, and there was a significant difference (P<0.05);Compared with the normal group, the tail suspension time of the model group was significantly prolonged, and there was a significant difference (P<0.05);Compared with the model group, there was a significant difference in the duration of the suspension of the warm acupuncture group and the moxibustion group (P<0.01);Compared with the normal group, the total distance of the water maze test was shorter in the model group, and there was a significant difference (P<0.01);Compared with the model group, both the warm acupuncture group and the moxibustion group were prolonged, and there was a significant difference (P<0.05);Compared with the moxibustion group, the distance between the rats in the warm acupuncture group was relatively longer, but there was no significant difference (P>0.05);Compared with the normal group, IL-1β, IL-6 and IFN-r increased significantly in the model group and there was a significant difference (P<0.05);Compared with the model group, IL- 1β and IL-6 in the warm acupuncture group was significantly decreased (P<0.05), and the IL-6 in the moxibustion group was significantly different (P<0.05);Compared with the model group, there was no significant difference between the IFN-r group and the moxibustion group (P>0.05);Compared with the moxibustion group, the levels of IL-1β, IL-6 and IFN-r were not significantly different (P>0.05). Conclusion: Warm acupuncture on “Dinghui Acupoint” and “Heart Acupoint” in Traditional Mongolian Medicine has the ability to improve the body’s defense and self-healing ability, improve chronic fatigue syndrome (CFS), and thus play a preventive role. The results of this research indicate that the warm acupuncture group and the moxibustion group have the same effect.
基金financially supported by the Director Fund of National Energy Deepwater Oil and Gas Engineering Technology Research and Development Center(Grant No.KJQZ-2024-2103)。
文摘The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.
文摘BACKGROUND Patients not only experience symptoms caused by cancer but also suffer from the accompanying psychological pain.Therefore,these patients do not have high quality of life.According to the World Health Organization,the incidence of leukemia in China in 2020 was 5.1/100000,the mortality rate was 3.3/100000,and the prevalence rate was 16.7/100000.Therefore,it is important to examine the influence of comorbid subthreshold depressive symptoms on leukemia patients.AIM To determine the impact of comorbid subthreshold depressive symptoms on cancer-related fatigue and complications in leukemia patients,thereby providing a basis for early diagnosis and treatment in clinical practice.METHODS A questionnaire survey was conducted among leukemia patients admitted to a tertiary hospital in Xi'an,Shaanxi Province,China,from August 2022 to December 2023.Patients with a score>16 on the Chinese Classification of Mental Disorders(CCMD-3)and a Hamilton Depression Rating Scale score of 8-17 were classified as the subthreshold depressive group(n=95),while 100 leukemia patients admitted during the same period were classified as the control group.Data were collected using Epidata 3.1 software,and comparisons were made between the two groups regarding general clinical data,the Piper Fatigue Scale(PFS),the Pittsburgh Sleep Quality Index(PSQI),the Numeric Rating Scale for pain assessment,laboratory indicators,and the occurrence of complications.RESULTS In this survey,120 leukemia patients with depression were preliminarily screened,95 patients with subthreshold depression were ultimately selected as the subthreshold depression group,and 100 leukemia patients admitted during the same period were enrolled as the normal group.Comparison of basic clinical data between the two groups revealed no significant differences in age,sex,body mass index,cognitive function,or comorbidity with other chronic diseases.However,there were statistically significant differences in the use of radiotherapy and regular exercise between the two groups(P<0.05).Comparisons of scales and laboratory indicators revealed no significant differences in albumin or PSQI scores between the two groups,but there were statistically significant differences in pain scores,PSQI scores,PFS scores,hemoglobin levels,and C-reactive protein levels(P<0.05).Spearman’s correlation analysis indicated that cancer-related fatigue was correlated with age,hemoglobin levels,C-reactive protein levels,pain,and regular exercise among leukemia patients with subthreshold depression.Multivariate regression analysis revealed that advanced age,combined radiotherapy,pain,and low hemoglobin levels were risk factors for cancer-related fatigue in leukemia patients with comorbid subthreshold depression,while regular exercise was a protective factor against cancer-related fatigue.Follow-up comparisons revealed a significantly lower overall incidence of complications in the control group(4%)than in the depressive group(24.21%;P<0.001).CONCLUSION Leukemia patients with comorbid subthreshold depressive symptoms experience more severe cancer-related fatigue and a higher incidence of complications.These findings may be related to advanced age,combined radiotherapy,pain,and low hemoglobin levels,while regular exercise may effectively alleviate symptoms.