Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The eff...Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The effects of stress disturbances on rock geomechanical behaviors under fatigue loading conditions and triaxial unloading conditions have been reported in previous studies.However,little is known about the dependence of the unloading rate on fatigue loading and confining stress unloading(FL-CSU)conditions that influence rock failure.In this paper,we aimed at investigating the fracture behaviors of marble under FL-CSU conditions using the post-test X-ray computed tomography(CT)scanning technique and the GCTS RTR 2000 rock mechanics system.Results show that damage accumulation at the fatigue stage can influence the final fracture behaviors of marble.The stored elastic energy for rock samples under FL-CSU tests is relatively larger compared to those under conventional triaxial tests,and the dissipated energy used to drive damage evolution and crack propagation is larger for FL-CSU tests.In FL-CSU tests,as the unloading rate increases,the dissipated energy grows and elastic energy reduces.CT scanning after the test reveals the impacts of the unloading rate on the crack pattern and a fracture degree index is therein defined in this context to represent the crack dimension.It shows that the crack pattern after FL-CSU tests depends on the unloading rate,and the fracture degree is in agreement with the analysis of both the energy dissipation and the amount of energy released.The effect of unloading rate on fracture evolution characteristics of marble is revealed by a series of FL-CSU tests.展开更多
In order to study the chloride ion transport performance in fly ash addition mortar, a new method, in which the fatigue loading and chloride diffusion are undertaken simultaneously, was developed. This method realizes...In order to study the chloride ion transport performance in fly ash addition mortar, a new method, in which the fatigue loading and chloride diffusion are undertaken simultaneously, was developed. This method realizes coupling the fatigue damage process and the process of chloride transporting of fly ash mortar. The transport performance of chloride in fly ash mortar specimens was studied under different stress levels. Moreover, the effect of fly ash content on transport performance of chloride ion in mortar was investigated. AE (Acoustic Emission) and SEM were used to acquire the damage distribution of mortar specimens under action of fatigue load. The results show that the diffusion coefficient of chloride in mortar specimens increases with stress level of fatigue loading. The addition of fly ash can mitigate the penetration of chloride ion. The results of microcmck 3D location acquired by AE, accompanied with crack characterizing from SEM, indicate that the damage degree of mortar specimen increases with stress level of fatigue loading. Furthermore, higher damage degree of mortar leads to more the chloride ion content in the sample.展开更多
The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Ba...The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus. The relationship between the residual secant elastic modulus and number of cycles was also established.展开更多
Experiments were made on plain concrete subjected to triaxial static loading and constant amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was 0...Experiments were made on plain concrete subjected to triaxial static loading and constant amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was 0, 0.1 f c , 0.25 f c and 0.4 f c , respectively, for the static test, and 0.1 f c and 0.25 f c for the fatigue test. Based on the triaxial compressive constitutive behavior of concrete, the inflexion of confining pressure evolution was chosen to be the fatigue damage criterion during the test. The rule of evolution of longitudinal maximum and minimum strains, longitudinal cyclic modulus and damage were recorded and analyzed. According to the Fardis Chen criterion model and the concept of equivalent fatigue life and equivalent stress level, a unified S N curve for multi axial compressive fatigue loading was proposed. Thus, the fatigue strength factors for different fatigue loading cases can be obtained. The present investigation provides information for the fatigue design of concrete structures.展开更多
Fatigue damage of materials includes static damage and cyclic damage.Static damage is a ratio of the plastic energy in first static loading to the statictoughness, while cyclic damage is the ratio of the cyclic plasti...Fatigue damage of materials includes static damage and cyclic damage.Static damage is a ratio of the plastic energy in first static loading to the statictoughness, while cyclic damage is the ratio of the cyclic plastic hysteresis energy to thefatigue toughness. In the calculation, cyclic hardening (or softening) of a material istaken into account, which results in the increase (or decrease) of the yield stress. Forsimplification, it is assumed that stress and strain in cyclic loading vary in accordancewith the hysteresis loop. Fatigue toughness of a material can be detennined bysymmetric cyclic stress controlled fatigue test. A method, rational and convenient forengineering, is proposed to estimate the fatigue life under random loading based onplastic hysteresis energy theorem. Preliminary verification by test is satisfactory.展开更多
In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under diff...In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.展开更多
A novel high-strength straight-hole recycled pervious concrete(HSRPC)for the secondary highway pavement was prepared in this paper.This study aimed to investigate the effect of porosity(0.126%,0.502%,and 1.13%),vehicl...A novel high-strength straight-hole recycled pervious concrete(HSRPC)for the secondary highway pavement was prepared in this paper.This study aimed to investigate the effect of porosity(0.126%,0.502%,and 1.13%),vehicle loading stress level(0.5 and 0.8)and service life on the resistance to rainstormbased waterlogging of HSRPC under fatigue loading.The mechanical properties of HSRPC in terms of flexural strength and dynamic elastic modulus were studied.The waterlogging resistance of HSRPC was described by surface water depth and drainage time.The microstructure of HSRPC were observed with scanning electron microscopy(SEM).Results showed that although the dynamic elastic modulus and flexural strength of HSRPC decreased with the increasing number of fatigue loading,the flexural strength of HSRPC was still greater than5 MPa after design service life of 20 years.After 2.5×10^(5)times of fatigue loading,the permeability coefficient of HSRPC with a porosity of 0.502%and 1.13%increased by 18.4%and 22.9%,respectively;while the permeability coefficient of HSRPC with 0.126%porosity dropped to 0.35 mm/s.The maximum surface water depth of HSRPC with a porosity of 0.126%,0.502%,and 1.13%were 8,5 and 4 mm,respectively.SEM results showed that fatigue loading expanded the number and width of cracks around the tiny pores in HSRPC.展开更多
A method is presented for estimating fatigue reliability under variable loading, which isbased on load cycles-fatigue life interference theory as well as cumulative fatigue damageanalysis. The basic opinion is that fo...A method is presented for estimating fatigue reliability under variable loading, which isbased on load cycles-fatigue life interference theory as well as cumulative fatigue damageanalysis. The basic opinion is that for variable loading the increment of failure probability pro-duced by each load cycle is determined by the stress level as well as the damage state at whichthis load cycle applies Contrast to 'conditional reliability-equivalent life methodology'. this meth-od calculates the equivalent cycle numbers between different stress levels according to cumulativefatigue damage rule but not equivalent failure probability.展开更多
To investigate the mechanical properties of a dowel action under fatigue loads, nine reinforced concrete specimens were fabricated, and the monotonic and fatigue loadings were performed on these specimens, respectivel...To investigate the mechanical properties of a dowel action under fatigue loads, nine reinforced concrete specimens were fabricated, and the monotonic and fatigue loadings were performed on these specimens, respectively. All of these specimens were divided into two series. Six specimens in SeriesⅠwith different bar diameters of 12, 20 and 25 mm were subjected to monotonic loads and were used to confirm the ultimate bearing capacity. The remaining three specimens in Series Ⅱ were subjected to fatigue loads and were designed to investigate the attenuation character of dowel action and the fatigue failure modes. The test results show that the accumulated fatigue damage due to fatigue loads can reduce the ultimate bearing capacity of specimens. With the increase in fatigue loads, the failure mode can transform to fatigue rupture of the dowel bar under the serviceability loading state,i. e. 55% of the monotonic capacity. The fatigue life is determined by the fatigue properties of steel and concrete.Based on the test data, the failure process of dowel action can be divided into two stages: the accumulation of fatigue damage and the fatigue rupture of dowel bar.展开更多
In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate tha...In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate that the biaxial compressive strength of rocks under biaxial compression increases firstly,and subsequently decreases with increase of the intermediate principal stress.The fatigue failure characteristics of the rocks in biaxial fatigue tests are functions of the peak value of fatigue loads,the intermediate principal stress and the rock lithology.With the increase of the peak values of fatigue loads,the fatigue lives of rocks decrease.The intermediate principal stress strengthens the resistance ability of rocks to fatigue loads except considering the strength increasing under biaxial confinements.The fatigue lives of rocks increase with the increase of the intermediate principal stress under the same ratio of the fatigue load and their biaxial compressive strength.The acoustic emission(AE)and fragments studies showed that the sandstone has higher ability to resist the fatigue loads compared to the marble,and the marble generated a greater number of smaller fragments after fatigue failure compared to the sandstone.So,it can be inferred that the rock breaking efficiency and rock burst is higher or severer induced by fatigue loading than that induced by monotonous quasi-static loading,especially for hard rocks.展开更多
A set of coupling experimental instrument was designed to study the transport properties of chloride ion in concrete under simultaneous coupling action of fatigue load and environmental factors. Firstly the water-satu...A set of coupling experimental instrument was designed to study the transport properties of chloride ion in concrete under simultaneous coupling action of fatigue load and environmental factors. Firstly the water-saturated performance of modem concrete was investigated, then diffusion performance of chloride ion under different stress levels and different temperature were studied respectively; meanwhile, the time- dependent behavior of the chloride ion diffusion in concrete was also researched. The results showed that the saturation degree of concrete can reach as high as 99%. Besides, diffusion coefficient of chloride ion increased with increasing of the stress level and temperature, and when the stress level and temperature are at 0.6 and 60 ℃ respectively, the diffusion coefficient is 6.3 ×10 -14 m2/s, moreover the diffusion coefficient of chloride ion in concrete decreased with time under the simultaneous coupling action of fatigue load and environment factors.展开更多
The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method ...The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.展开更多
Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to...Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are –3.78% and –1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.展开更多
The purpose of this study was to investigate how cyclic loading influenced the fracture toughness of hot-press lithium disilicate and zirconia core materials and whether there was an increase in the propensity for cro...The purpose of this study was to investigate how cyclic loading influenced the fracture toughness of hot-press lithium disilicate and zirconia core materials and whether there was an increase in the propensity for crown failure. Two types of all-ceramic crowns including the IPS e.max Press system (n=24) and the Lava zirconia system (n=24), were selected. Sectioned specimens were subjected to cyclic loading with the maximum magnitude of 200 N (R=0.1) until two million cycles. The material properties including Young's modulus (E) and hardness (H) and the fracture toughness (K,c) of the core materials were evaluated using indentation methods (n= 12 each). The load-bearing capacities of the specimens were examined by means of monotonic load to fracture (n=12 each). It was found that the material properties, including E, Hand Knc, of the two types of dental ceramics, were reduced. Statistical analysis indicated that there were no significant influences of fatigue loading on material properties E and H for both types of dental ceramics or Kgc for zirconia, while for the IPS e.max Press core, K,c, which was parallel to the direction of the lithium disilicate crystals, was significantly reduced (P-0.001). A conclusion was drawn that zirconia possesses high mechanical reliability and sustainable capacity to resist fatigue loading, while fatigue loading remarkably degraded the anisotropic mechanical behaviour of hot-press lithium disilicate ceramics.展开更多
A review is provided of various approaches that have been adopted recently to assess the fatigue of ships and offshore structures.The relevant fatigue loading is reviewed first,focusing on the successive loading and u...A review is provided of various approaches that have been adopted recently to assess the fatigue of ships and offshore structures.The relevant fatigue loading is reviewed first,focusing on the successive loading and unloading of the cargo and the transient loadings.The factors influencing fatigue strength are discussed,including the geometrical parameters,material,residual stress,and ones related to the environment.Different approaches for fatigue analyses of seam-welded joints are covered,i.e.,the structural stress or strain approach,the notch stress or strain approach,notch intensity approach,and the crack propagation approach.展开更多
In marine environments,the durability of reinforced concrete structures such as bridges,which suffer from the coupled effects of corrosion and fatigue damage,is significantly reduced.Fatigue loading can result in seve...In marine environments,the durability of reinforced concrete structures such as bridges,which suffer from the coupled effects of corrosion and fatigue damage,is significantly reduced.Fatigue loading can result in severe dete-rioration of the bonds between reinforcing steel bars and the surrounding concrete,particularly when reinforcing bars are corroded.Uniaxial tension testing was conducted under static loading and fatigue loading conditions to investigate the bonding characteristics between corroded reinforcing bars and concrete.An electrolyte corrosion technique was used to accelerate steel corrosion.The results show that the bond strength was reduced under fati-gue loading,although the concrete did not crack.Therefore,fatigue loading has negative effects on the bond strength between corroded steel bars and concrete.The effects of corrosion cracking on bond strength become more pronounced after corrosion cracking appears along the main reinforcing bars.When the average width of cracking along main reinforcing bars exceeds 3 mm,the bonding properties deteriorate rapidly based on the effects of corrosion cracking,whereas fatigue loading exhibits no additional effects on bond strength.展开更多
In connection with the design of floating wind turbines,stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces.To study the random structural responses of a newly designed submerged ...In connection with the design of floating wind turbines,stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces.To study the random structural responses of a newly designed submerged tension leg platform(STLP)wind turbine,a set of dynamic simulations and comparison analysis with the MIT/NREL TLP wind turbine are carried out.The signal filter method is used to evaluate the mean and standard deviations of the structural response.Furthermore,the extreme responses are estimated by using the mean upcrossing rate method.The fatigue damages for blade root,tower,and mooring line are also studied according to the simulated time-series.The results and comparison analysis show that the STLP gives small surge and pitch motions and mooring line tensions in operational sea states due to the small water-plane area.Additionally,in severe sea states,the STLP gives lower extreme values of platform pitch,slightly larger surge and heave motions and better towerbase and mooring line fatigue performances than those of the MIT/NREL TLP.It is found that the STLP wind turbine has good performances in structural responses and could be a potential type for exploiting the wind resources located in deep waters.展开更多
Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue...Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm.展开更多
A new, more actual approach for omitting small loads in a loading history was pres-ented according to crack closure, and load interactive effects which are large on damage of com-ponents were studied. Intrinsic period...A new, more actual approach for omitting small loads in a loading history was pres-ented according to crack closure, and load interactive effects which are large on damage of com-ponents were studied. Intrinsic periodic spectrum block representing a damage element of a loadhistory, a new concept, was put out. It has been proven by theoretic analysis and tests that themodes of constructing fatigue loading spectrum have little effect on damage of components,which will change the incomplete knowledges on constructing fatigue spectrum ago.展开更多
Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solv...Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solve this problem,this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis,feature selection,and model construction.In the mechanism analysis part,the generation mechanism of blade loads and the load theoretical calculationmethod based on material damage theory are analyzed,and four measurable operating state parameters related to blade loads are screened;in the feature extraction part,15 characteristic indicators of each screened parameter are extracted in the time and frequency domain,and feature selection is completed through correlation analysis with blade loads to determine the input parameters of data-driven modeling;in the model construction part,a deep neural network based on feedforward and feedback propagation is designed to construct the nonlinear coupling relationship between the unit operating parameter characteristics and blade loads.The results show that the proposed method mines the wind turbine operating state characteristics highly correlated with the blade load,such as the standard deviation of wind speed.The model built using these characteristics has reasonable calculation and fitting capabilities for the blade load and shows a better fitting level for untrained out-of-sample data than the traditional scheme.Based on the mean absolute percentage error calculation,the modeling accuracy of the two blade loads can reach more than 90%and 80%,respectively,providing a good foundation for the subsequent optimization control to suppress the blade load.展开更多
基金The authors would like to thank the editors and the anonymous reviewers for their helpful and constructive comments.This study was supported by National Key Technologies Research&Development Program(Grant No.2018YFC0808402)State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK1824)the Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-20-004A2).
文摘Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The effects of stress disturbances on rock geomechanical behaviors under fatigue loading conditions and triaxial unloading conditions have been reported in previous studies.However,little is known about the dependence of the unloading rate on fatigue loading and confining stress unloading(FL-CSU)conditions that influence rock failure.In this paper,we aimed at investigating the fracture behaviors of marble under FL-CSU conditions using the post-test X-ray computed tomography(CT)scanning technique and the GCTS RTR 2000 rock mechanics system.Results show that damage accumulation at the fatigue stage can influence the final fracture behaviors of marble.The stored elastic energy for rock samples under FL-CSU tests is relatively larger compared to those under conventional triaxial tests,and the dissipated energy used to drive damage evolution and crack propagation is larger for FL-CSU tests.In FL-CSU tests,as the unloading rate increases,the dissipated energy grows and elastic energy reduces.CT scanning after the test reveals the impacts of the unloading rate on the crack pattern and a fracture degree index is therein defined in this context to represent the crack dimension.It shows that the crack pattern after FL-CSU tests depends on the unloading rate,and the fracture degree is in agreement with the analysis of both the energy dissipation and the amount of energy released.The effect of unloading rate on fracture evolution characteristics of marble is revealed by a series of FL-CSU tests.
基金Funded by the Scientific Research Foundation of Graduate School Southeast University(No.YBJJ1129)the National Natural Science Foundation of China(No. 51078081)the National Basic Research Program of China("973"Project)(No. 2009CB326200)
文摘In order to study the chloride ion transport performance in fly ash addition mortar, a new method, in which the fatigue loading and chloride diffusion are undertaken simultaneously, was developed. This method realizes coupling the fatigue damage process and the process of chloride transporting of fly ash mortar. The transport performance of chloride in fly ash mortar specimens was studied under different stress levels. Moreover, the effect of fly ash content on transport performance of chloride ion in mortar was investigated. AE (Acoustic Emission) and SEM were used to acquire the damage distribution of mortar specimens under action of fatigue load. The results show that the diffusion coefficient of chloride in mortar specimens increases with stress level of fatigue loading. The addition of fly ash can mitigate the penetration of chloride ion. The results of microcmck 3D location acquired by AE, accompanied with crack characterizing from SEM, indicate that the damage degree of mortar specimen increases with stress level of fatigue loading. Furthermore, higher damage degree of mortar leads to more the chloride ion content in the sample.
基金the Doctoral Authorization Point Foundation of China(No.30300078)
文摘The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus. The relationship between the residual secant elastic modulus and number of cycles was also established.
文摘Experiments were made on plain concrete subjected to triaxial static loading and constant amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was 0, 0.1 f c , 0.25 f c and 0.4 f c , respectively, for the static test, and 0.1 f c and 0.25 f c for the fatigue test. Based on the triaxial compressive constitutive behavior of concrete, the inflexion of confining pressure evolution was chosen to be the fatigue damage criterion during the test. The rule of evolution of longitudinal maximum and minimum strains, longitudinal cyclic modulus and damage were recorded and analyzed. According to the Fardis Chen criterion model and the concept of equivalent fatigue life and equivalent stress level, a unified S N curve for multi axial compressive fatigue loading was proposed. Thus, the fatigue strength factors for different fatigue loading cases can be obtained. The present investigation provides information for the fatigue design of concrete structures.
文摘Fatigue damage of materials includes static damage and cyclic damage.Static damage is a ratio of the plastic energy in first static loading to the statictoughness, while cyclic damage is the ratio of the cyclic plastic hysteresis energy to thefatigue toughness. In the calculation, cyclic hardening (or softening) of a material istaken into account, which results in the increase (or decrease) of the yield stress. Forsimplification, it is assumed that stress and strain in cyclic loading vary in accordancewith the hysteresis loop. Fatigue toughness of a material can be detennined bysymmetric cyclic stress controlled fatigue test. A method, rational and convenient forengineering, is proposed to estimate the fatigue life under random loading based onplastic hysteresis energy theorem. Preliminary verification by test is satisfactory.
基金Projects(51208066,51038002)supported by the National Natural Science Foundation of ChinaProject(20114316120001)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China+5 种基金Project(2012-319-825-150)supported by Application and Basic Research Projects of Ministry of Transport ChinaProject(2013K28)supported by Transportation Science and Technology Plan Projects of Henan Province,ChinaProject(201102)supported by Transportation Science and Technology Plan Projects of Hunan Province,ChinaProject(YB2012B031)supported by Funding Projects of Hunan Provincial Outstanding Doctorate Dissertation,ChinaProject(2014gxjgclkf-002)supported by Open Fund of Key Laboratory of Road Structure and Material of Guangxi Province ChinaProject(kfj120101)supported by Open Fund of the Key Laboratory of Highway Engineering(Changsha University of Science and Technology),China
文摘In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.
基金Funded by the National Natural Science Foundation of China(No.51878081)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX21_1262)。
文摘A novel high-strength straight-hole recycled pervious concrete(HSRPC)for the secondary highway pavement was prepared in this paper.This study aimed to investigate the effect of porosity(0.126%,0.502%,and 1.13%),vehicle loading stress level(0.5 and 0.8)and service life on the resistance to rainstormbased waterlogging of HSRPC under fatigue loading.The mechanical properties of HSRPC in terms of flexural strength and dynamic elastic modulus were studied.The waterlogging resistance of HSRPC was described by surface water depth and drainage time.The microstructure of HSRPC were observed with scanning electron microscopy(SEM).Results showed that although the dynamic elastic modulus and flexural strength of HSRPC decreased with the increasing number of fatigue loading,the flexural strength of HSRPC was still greater than5 MPa after design service life of 20 years.After 2.5×10^(5)times of fatigue loading,the permeability coefficient of HSRPC with a porosity of 0.502%and 1.13%increased by 18.4%and 22.9%,respectively;while the permeability coefficient of HSRPC with 0.126%porosity dropped to 0.35 mm/s.The maximum surface water depth of HSRPC with a porosity of 0.126%,0.502%,and 1.13%were 8,5 and 4 mm,respectively.SEM results showed that fatigue loading expanded the number and width of cracks around the tiny pores in HSRPC.
文摘A method is presented for estimating fatigue reliability under variable loading, which isbased on load cycles-fatigue life interference theory as well as cumulative fatigue damageanalysis. The basic opinion is that for variable loading the increment of failure probability pro-duced by each load cycle is determined by the stress level as well as the damage state at whichthis load cycle applies Contrast to 'conditional reliability-equivalent life methodology'. this meth-od calculates the equivalent cycle numbers between different stress levels according to cumulativefatigue damage rule but not equivalent failure probability.
基金The Fund of the National Key Laboratory in China(No.2015-Ky-01)the National Key Technology R&D Program of China(No.2015BAB07B07)
文摘To investigate the mechanical properties of a dowel action under fatigue loads, nine reinforced concrete specimens were fabricated, and the monotonic and fatigue loadings were performed on these specimens, respectively. All of these specimens were divided into two series. Six specimens in SeriesⅠwith different bar diameters of 12, 20 and 25 mm were subjected to monotonic loads and were used to confirm the ultimate bearing capacity. The remaining three specimens in Series Ⅱ were subjected to fatigue loads and were designed to investigate the attenuation character of dowel action and the fatigue failure modes. The test results show that the accumulated fatigue damage due to fatigue loads can reduce the ultimate bearing capacity of specimens. With the increase in fatigue loads, the failure mode can transform to fatigue rupture of the dowel bar under the serviceability loading state,i. e. 55% of the monotonic capacity. The fatigue life is determined by the fatigue properties of steel and concrete.Based on the test data, the failure process of dowel action can be divided into two stages: the accumulation of fatigue damage and the fatigue rupture of dowel bar.
基金Projects(51774326,41807259)supported by the National Natural Science Foundation of ChinaProject(MDPC201917)supported by Mining Disaster Prevention and Control Ministry Key Laboratory at Shandong University of Science and Technology,China。
文摘In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate that the biaxial compressive strength of rocks under biaxial compression increases firstly,and subsequently decreases with increase of the intermediate principal stress.The fatigue failure characteristics of the rocks in biaxial fatigue tests are functions of the peak value of fatigue loads,the intermediate principal stress and the rock lithology.With the increase of the peak values of fatigue loads,the fatigue lives of rocks decrease.The intermediate principal stress strengthens the resistance ability of rocks to fatigue loads except considering the strength increasing under biaxial confinements.The fatigue lives of rocks increase with the increase of the intermediate principal stress under the same ratio of the fatigue load and their biaxial compressive strength.The acoustic emission(AE)and fragments studies showed that the sandstone has higher ability to resist the fatigue loads compared to the marble,and the marble generated a greater number of smaller fragments after fatigue failure compared to the sandstone.So,it can be inferred that the rock breaking efficiency and rock burst is higher or severer induced by fatigue loading than that induced by monotonous quasi-static loading,especially for hard rocks.
基金Supported by the Scientif ic Research Foundation of Graduation School of Southeast University(No.YBjj1129)the National Natural Science Foundation of China(No. 51078081)Ph D Programs Foundation of Ministry of Education of China(No. 200802861080)
文摘A set of coupling experimental instrument was designed to study the transport properties of chloride ion in concrete under simultaneous coupling action of fatigue load and environmental factors. Firstly the water-saturated performance of modem concrete was investigated, then diffusion performance of chloride ion under different stress levels and different temperature were studied respectively; meanwhile, the time- dependent behavior of the chloride ion diffusion in concrete was also researched. The results showed that the saturation degree of concrete can reach as high as 99%. Besides, diffusion coefficient of chloride ion increased with increasing of the stress level and temperature, and when the stress level and temperature are at 0.6 and 60 ℃ respectively, the diffusion coefficient is 6.3 ×10 -14 m2/s, moreover the diffusion coefficient of chloride ion in concrete decreased with time under the simultaneous coupling action of fatigue load and environment factors.
文摘The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.
基金Supported by National High Technology Research and Development Program of China (Grant No.2011AA11A265)National Natural Science Foundation of China (Grant Nos.50875173,51105241)Shanghai Municipal Natural Science Foundation of China (Grant No.11ZR1414700)
文摘Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are –3.78% and –1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.
基金supported by the National Science Foundation of China(Grant No.11172161)the Science and Technology Commission of Shanghai Municipality(Grant No.10zr1423400)+3 种基金the Innovation Program of the Shanghai Municipal Education Commission(No.12ZZ092)the State Key Laboratory of Oral Diseases(Sichuan University)(GrantSKLODSCU2009KF03)the Shanghai Leading Academic Discipline Project(No.S30106)Instrumental Analysis and Research Centre at Shanghai University
文摘The purpose of this study was to investigate how cyclic loading influenced the fracture toughness of hot-press lithium disilicate and zirconia core materials and whether there was an increase in the propensity for crown failure. Two types of all-ceramic crowns including the IPS e.max Press system (n=24) and the Lava zirconia system (n=24), were selected. Sectioned specimens were subjected to cyclic loading with the maximum magnitude of 200 N (R=0.1) until two million cycles. The material properties including Young's modulus (E) and hardness (H) and the fracture toughness (K,c) of the core materials were evaluated using indentation methods (n= 12 each). The load-bearing capacities of the specimens were examined by means of monotonic load to fracture (n=12 each). It was found that the material properties, including E, Hand Knc, of the two types of dental ceramics, were reduced. Statistical analysis indicated that there were no significant influences of fatigue loading on material properties E and H for both types of dental ceramics or Kgc for zirconia, while for the IPS e.max Press core, K,c, which was parallel to the direction of the lithium disilicate crystals, was significantly reduced (P-0.001). A conclusion was drawn that zirconia possesses high mechanical reliability and sustainable capacity to resist fatigue loading, while fatigue loading remarkably degraded the anisotropic mechanical behaviour of hot-press lithium disilicate ceramics.
文摘A review is provided of various approaches that have been adopted recently to assess the fatigue of ships and offshore structures.The relevant fatigue loading is reviewed first,focusing on the successive loading and unloading of the cargo and the transient loadings.The factors influencing fatigue strength are discussed,including the geometrical parameters,material,residual stress,and ones related to the environment.Different approaches for fatigue analyses of seam-welded joints are covered,i.e.,the structural stress or strain approach,the notch stress or strain approach,notch intensity approach,and the crack propagation approach.
基金This work was supported by the Fundamental Research Funds for Beijing Universities(110052971921/059).S H received the Grant。
文摘In marine environments,the durability of reinforced concrete structures such as bridges,which suffer from the coupled effects of corrosion and fatigue damage,is significantly reduced.Fatigue loading can result in severe dete-rioration of the bonds between reinforcing steel bars and the surrounding concrete,particularly when reinforcing bars are corroded.Uniaxial tension testing was conducted under static loading and fatigue loading conditions to investigate the bonding characteristics between corroded reinforcing bars and concrete.An electrolyte corrosion technique was used to accelerate steel corrosion.The results show that the bond strength was reduced under fati-gue loading,although the concrete did not crack.Therefore,fatigue loading has negative effects on the bond strength between corroded steel bars and concrete.The effects of corrosion cracking on bond strength become more pronounced after corrosion cracking appears along the main reinforcing bars.When the average width of cracking along main reinforcing bars exceeds 3 mm,the bonding properties deteriorate rapidly based on the effects of corrosion cracking,whereas fatigue loading exhibits no additional effects on bond strength.
基金the National Natural Science Foundation of China(Grant No.51809135)the National Natural Science Foundation of China-Shandong Joint Fund(Grant No.U1806227)the Natural Science Foundation of Shandong Province(Grant No.ZR2018BEE047).
文摘In connection with the design of floating wind turbines,stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces.To study the random structural responses of a newly designed submerged tension leg platform(STLP)wind turbine,a set of dynamic simulations and comparison analysis with the MIT/NREL TLP wind turbine are carried out.The signal filter method is used to evaluate the mean and standard deviations of the structural response.Furthermore,the extreme responses are estimated by using the mean upcrossing rate method.The fatigue damages for blade root,tower,and mooring line are also studied according to the simulated time-series.The results and comparison analysis show that the STLP gives small surge and pitch motions and mooring line tensions in operational sea states due to the small water-plane area.Additionally,in severe sea states,the STLP gives lower extreme values of platform pitch,slightly larger surge and heave motions and better towerbase and mooring line fatigue performances than those of the MIT/NREL TLP.It is found that the STLP wind turbine has good performances in structural responses and could be a potential type for exploiting the wind resources located in deep waters.
基金funded by the National Natural Science Foundation of China (Grant Number 52075305).
文摘Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm.
文摘A new, more actual approach for omitting small loads in a loading history was pres-ented according to crack closure, and load interactive effects which are large on damage of com-ponents were studied. Intrinsic periodic spectrum block representing a damage element of a loadhistory, a new concept, was put out. It has been proven by theoretic analysis and tests that themodes of constructing fatigue loading spectrum have little effect on damage of components,which will change the incomplete knowledges on constructing fatigue spectrum ago.
基金supported by Science and Technology Project funding from China Southern Power Grid Corporation No.GDKJXM20230245(031700KC23020003).
文摘Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solve this problem,this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis,feature selection,and model construction.In the mechanism analysis part,the generation mechanism of blade loads and the load theoretical calculationmethod based on material damage theory are analyzed,and four measurable operating state parameters related to blade loads are screened;in the feature extraction part,15 characteristic indicators of each screened parameter are extracted in the time and frequency domain,and feature selection is completed through correlation analysis with blade loads to determine the input parameters of data-driven modeling;in the model construction part,a deep neural network based on feedforward and feedback propagation is designed to construct the nonlinear coupling relationship between the unit operating parameter characteristics and blade loads.The results show that the proposed method mines the wind turbine operating state characteristics highly correlated with the blade load,such as the standard deviation of wind speed.The model built using these characteristics has reasonable calculation and fitting capabilities for the blade load and shows a better fitting level for untrained out-of-sample data than the traditional scheme.Based on the mean absolute percentage error calculation,the modeling accuracy of the two blade loads can reach more than 90%and 80%,respectively,providing a good foundation for the subsequent optimization control to suppress the blade load.