The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati...The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results.展开更多
With the method of neural network, the processes of fatigue stiffness decreasing and deflection increasing of reinforced concrete beams under cyclic loading were simulated. The simulating system was built with the giv...With the method of neural network, the processes of fatigue stiffness decreasing and deflection increasing of reinforced concrete beams under cyclic loading were simulated. The simulating system was built with the given experimental data. The prediction model of neural network structure and the corresponding parameters were obtained. The precision and results were satisfied and could be used to investigate the fatigue properties of reinforced concrete beams in complex environment and under repeating loads.展开更多
Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of th...Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the test S-N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.展开更多
Four-point flexural fatigue test for Gussasphalt mixture specimen was carried out at a straincontrolled mode system. The results showed that the development of the tested stiffness modulus and phase angle of the mixtu...Four-point flexural fatigue test for Gussasphalt mixture specimen was carried out at a straincontrolled mode system. The results showed that the development of the tested stiffness modulus and phase angle of the mixtures with increasing load cycles exhibited three periods, initial generation, slow development and failure period. The fatigue crack generation zone formed in the third period, in which the macro mechanical properties were signifi cantly decreased. Moreover, we also analyzed the effects of asphalt content and mixing temperature on the fatigue life of the mixture. The results showed that the fi rst period when the specimen's initial stiffness modulus was reduced to 80% accounted for 5%-10% of the total fatigue life; the second period in which the reduction became slow and demonstrated a liner relationship with load cycles occupied 70%-85% of the fatigue life; and the third period was about 5%-10%. The results indicated that the lower the mixing temperature, the longer the fatigue life of Gussasphalt mixture. Besides, the increasing of asphalt content has a minor effect on the fatigue life of Gussasphalt mixture展开更多
基金Project(51108355)supported by the National Natural Science Foundation of ChinaProject(2011CDB269)supported by the Natural Science Foundation of Hubei Province,China
文摘The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results.
基金Supported by Visiting Scholar Foundaion of Key Lab. in University and National Natural Science Foundation of China(5 0 0 780 0 9)
文摘With the method of neural network, the processes of fatigue stiffness decreasing and deflection increasing of reinforced concrete beams under cyclic loading were simulated. The simulating system was built with the given experimental data. The prediction model of neural network structure and the corresponding parameters were obtained. The precision and results were satisfied and could be used to investigate the fatigue properties of reinforced concrete beams in complex environment and under repeating loads.
基金Projects(51308363,11327801)supported by the National Natural Science Foundation of ChinaProject(2013-1792-9-4)supported by the Scientific Research Foundation for the Returned Overseas Chinese ScholarsProject(YJ201307)supported by the Start-up Research Fund for Introduced Talents of Sichuan University,China
文摘Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the test S-N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.
基金Funded by the National Natural Science Foundation of China(No.51202214)
文摘Four-point flexural fatigue test for Gussasphalt mixture specimen was carried out at a straincontrolled mode system. The results showed that the development of the tested stiffness modulus and phase angle of the mixtures with increasing load cycles exhibited three periods, initial generation, slow development and failure period. The fatigue crack generation zone formed in the third period, in which the macro mechanical properties were signifi cantly decreased. Moreover, we also analyzed the effects of asphalt content and mixing temperature on the fatigue life of the mixture. The results showed that the fi rst period when the specimen's initial stiffness modulus was reduced to 80% accounted for 5%-10% of the total fatigue life; the second period in which the reduction became slow and demonstrated a liner relationship with load cycles occupied 70%-85% of the fatigue life; and the third period was about 5%-10%. The results indicated that the lower the mixing temperature, the longer the fatigue life of Gussasphalt mixture. Besides, the increasing of asphalt content has a minor effect on the fatigue life of Gussasphalt mixture