The paper is focused on the ship hull safety problems related to the longitudinal strength of the ship during design, construction and service in context of International Goal-Based Ship Construction Standards carried...The paper is focused on the ship hull safety problems related to the longitudinal strength of the ship during design, construction and service in context of International Goal-Based Ship Construction Standards carried out by International Maritime Organization (IMO). The study underscores the importance of ship longitudinal strength for prevention of theirs losses, mentioning the most important measures taken by IMO for improvement of ship safety. In the work, a critical analysis of the methodology of the International Association of Classification Societies (IACS) for calculation of sectional efforts induced by waves in ship’s hull is described. Finally, a calculation base proposal for improvement the efforts on quasi-static layout of the ship on wave is performed.展开更多
High‐speed maglev trains are subjected to severe dynamic loads,thus posing a failure hazard.It is necessary to account for the vehicle dynamics to improve the structural strength and fatigue life assessment approach ...High‐speed maglev trains are subjected to severe dynamic loads,thus posing a failure hazard.It is necessary to account for the vehicle dynamics to improve the structural strength and fatigue life assessment approach under harsh routes and super high‐speed grades.As the most critical load‐carrying part between the vehicle body and levitation frames,the swing bar was taken as an example to demonstrate the significance of vehicle dynamics to integrate classical structural strength and fatigue life with the service conditions.A multiphysics‐coupled dynamic model of an alpha improvement scheme for an electromagnetic suspension maglev train capable of 600 km/h was established to investigate the complex dynamic loads and fatigue spectra.Using this model,the structural strength and fatigue life of the wrought swing bars were investigated.Results show only a slight effect on the structural strength and fatigue life of swing bars by the super high‐speed grades.The nonaxial bending moments caused by the uncompensated relative displacement between the vehicle body and bolsters are identified as the decisive factors.The minimum safety factor of the structural strength for wrought swing bars is 1.33,while the minimum fatigue life is 34 years.Both match the design requirements but are not conservative enough.Therefore,further verification and optimization are recommended to improve the design of swing bars.展开更多
The pinion bracket-assembly(PBA) is a major part of three gorges project(TGP) ship lift drive system. The static strength,fatigue strength and stress distribution of hinge pin of PBA were analyzed by ANSYS, and the st...The pinion bracket-assembly(PBA) is a major part of three gorges project(TGP) ship lift drive system. The static strength,fatigue strength and stress distribution of hinge pin of PBA were analyzed by ANSYS, and the structure of PBA was optimized. The results show that after the optimization, the maximum comprehensive stress is 259.59 MPa, the maximum fatigue cumulative damage of weld joints is 0.94 and the maximum vertical deformation of hinge pin is 0.14 mm. The elastic deformation, hydropneumatic spring cylinder(HSC) load response and the vibration characteristics of PBA were studied by the bearing test when PBA bore the load caused by different water level errors. The results indicate that when the water level of ship chamber ranges from 3.4 m to 3.6 m,the vertical elastic deformation of the pinion shaft is between-8.58 and 10.50 mm. When upward outage-load(1580 k N) is imposed by the test-rack, the vertical elastic deformation of the pinion shaft is 13.42 and 14.07 mm and HSC load response is 795.80-800.80 k N. In the process of imposing load on the pinion by the test-rack, the maximum vibration amplitude and acceleration of PBA internal components are 0.37° and 2.67 rad/s2, respectively; the maximum impact on the pin caused by vibration is 19.89 k N; the pinion shaft vertical displacement and HSC load response do not fluctuate. There is a great difference between the frequency of meshing force of the pinion and the rack(1.06 Hz) and first-order natural frequency of PBA(8.41 Hz), thus PBA will not resonate.From all above, PBA meets the static strength and fatigue strength requirements. The vibration of PBA internal components has no effect on the vertical displacement of the pinion shaft, HSC load response and smooth operation of PBA. There is a liner relationship in the ratio of 2:1 between the thrust imposed by the test-rack and HSC load, thus HSC can limit the load imposed on the pinion.展开更多
为实现深远海石油的安全高效运输,开发了具有全新船型的深远海多功能原油转驳船(Cargo Transfer Vessel,CTV)。根据原油转驳船工作海域的环境特点,使用有限元计算软件包Sesam,建立了有限元分析结构模型,采用了等效设计波方法对该类型船...为实现深远海石油的安全高效运输,开发了具有全新船型的深远海多功能原油转驳船(Cargo Transfer Vessel,CTV)。根据原油转驳船工作海域的环境特点,使用有限元计算软件包Sesam,建立了有限元分析结构模型,采用了等效设计波方法对该类型船只进行频域水动力分析,并对主要负载进行长期预测,然后将波浪载荷施加于结构模型中进行强度校核。通过校核不同工况下原油转驳船的屈服强度、屈曲强度,并基于谱疲劳分析与子模型技术对易于产生疲劳破坏的节点进行疲劳分析,优化了船体设计结构。计算分析结果表明:原油转驳船的设计强度与疲劳寿命均满足DNV的规范要求,载荷下船体结构应力均低于320 MPa,具有足够的承载能力。通过添加水密补板,优化后的舷侧肋位处纵骨过梁孔有效提高了疲劳寿命,对后续系列船的设计与校核具有一定参考价值。展开更多
文摘The paper is focused on the ship hull safety problems related to the longitudinal strength of the ship during design, construction and service in context of International Goal-Based Ship Construction Standards carried out by International Maritime Organization (IMO). The study underscores the importance of ship longitudinal strength for prevention of theirs losses, mentioning the most important measures taken by IMO for improvement of ship safety. In the work, a critical analysis of the methodology of the International Association of Classification Societies (IACS) for calculation of sectional efforts induced by waves in ship’s hull is described. Finally, a calculation base proposal for improvement the efforts on quasi-static layout of the ship on wave is performed.
基金National Key R&D Program of China,Grant/Award Numbers:2016YFB1200602‐15,2016YFB1200602‐17National Natural Science Foundation of China,Grant/Award Numbers:U2032121,12192212Open Research Project of State Key Laboratory of Traction Power,Grant/Award Numbers:2021TPL‐T03,2021TPL‐T04,2021TPL‐T06。
文摘High‐speed maglev trains are subjected to severe dynamic loads,thus posing a failure hazard.It is necessary to account for the vehicle dynamics to improve the structural strength and fatigue life assessment approach under harsh routes and super high‐speed grades.As the most critical load‐carrying part between the vehicle body and levitation frames,the swing bar was taken as an example to demonstrate the significance of vehicle dynamics to integrate classical structural strength and fatigue life with the service conditions.A multiphysics‐coupled dynamic model of an alpha improvement scheme for an electromagnetic suspension maglev train capable of 600 km/h was established to investigate the complex dynamic loads and fatigue spectra.Using this model,the structural strength and fatigue life of the wrought swing bars were investigated.Results show only a slight effect on the structural strength and fatigue life of swing bars by the super high‐speed grades.The nonaxial bending moments caused by the uncompensated relative displacement between the vehicle body and bolsters are identified as the decisive factors.The minimum safety factor of the structural strength for wrought swing bars is 1.33,while the minimum fatigue life is 34 years.Both match the design requirements but are not conservative enough.Therefore,further verification and optimization are recommended to improve the design of swing bars.
基金Project(SPKJ016-06)supported by the Key Research Project of State Power Corporation,ChinaProject(2004AC1O1D31)supported by the Key Scientific Research Project of Hubei Province,ChinaProject(0722018)supported by the China Three Gorges Corporation
文摘The pinion bracket-assembly(PBA) is a major part of three gorges project(TGP) ship lift drive system. The static strength,fatigue strength and stress distribution of hinge pin of PBA were analyzed by ANSYS, and the structure of PBA was optimized. The results show that after the optimization, the maximum comprehensive stress is 259.59 MPa, the maximum fatigue cumulative damage of weld joints is 0.94 and the maximum vertical deformation of hinge pin is 0.14 mm. The elastic deformation, hydropneumatic spring cylinder(HSC) load response and the vibration characteristics of PBA were studied by the bearing test when PBA bore the load caused by different water level errors. The results indicate that when the water level of ship chamber ranges from 3.4 m to 3.6 m,the vertical elastic deformation of the pinion shaft is between-8.58 and 10.50 mm. When upward outage-load(1580 k N) is imposed by the test-rack, the vertical elastic deformation of the pinion shaft is 13.42 and 14.07 mm and HSC load response is 795.80-800.80 k N. In the process of imposing load on the pinion by the test-rack, the maximum vibration amplitude and acceleration of PBA internal components are 0.37° and 2.67 rad/s2, respectively; the maximum impact on the pin caused by vibration is 19.89 k N; the pinion shaft vertical displacement and HSC load response do not fluctuate. There is a great difference between the frequency of meshing force of the pinion and the rack(1.06 Hz) and first-order natural frequency of PBA(8.41 Hz), thus PBA will not resonate.From all above, PBA meets the static strength and fatigue strength requirements. The vibration of PBA internal components has no effect on the vertical displacement of the pinion shaft, HSC load response and smooth operation of PBA. There is a liner relationship in the ratio of 2:1 between the thrust imposed by the test-rack and HSC load, thus HSC can limit the load imposed on the pinion.
文摘为实现深远海石油的安全高效运输,开发了具有全新船型的深远海多功能原油转驳船(Cargo Transfer Vessel,CTV)。根据原油转驳船工作海域的环境特点,使用有限元计算软件包Sesam,建立了有限元分析结构模型,采用了等效设计波方法对该类型船只进行频域水动力分析,并对主要负载进行长期预测,然后将波浪载荷施加于结构模型中进行强度校核。通过校核不同工况下原油转驳船的屈服强度、屈曲强度,并基于谱疲劳分析与子模型技术对易于产生疲劳破坏的节点进行疲劳分析,优化了船体设计结构。计算分析结果表明:原油转驳船的设计强度与疲劳寿命均满足DNV的规范要求,载荷下船体结构应力均低于320 MPa,具有足够的承载能力。通过添加水密补板,优化后的舷侧肋位处纵骨过梁孔有效提高了疲劳寿命,对后续系列船的设计与校核具有一定参考价值。