The effect of different initial microstructures deftned by γ' precipitate morphology has been investigated at the creep/fatigue conditions of 900℃ and 500 MPa. The wave form of stress as a function of time for c...The effect of different initial microstructures deftned by γ' precipitate morphology has been investigated at the creep/fatigue conditions of 900℃ and 500 MPa. The wave form of stress as a function of time for cyclic load was of trapezoidal shape with a hold time of 10s at the upper stress level. The TEM was employed to examine the deformation process in strengthened γ' matrix in dependence of γ' precipitate morphology. The fracture lifetime and cycle number up to fracture were the criteria to evaluate the additional cyclic component efFect on the course of deformation展开更多
Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasing...Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasingly large ship dimensions,the greater attention should be paid to fatigue problems.Most research focuses on how to more easily access the fatigue strength of ships.Also,the major classification societies have already released their fatigue assessment notes.However,due to the complexity of factors influencing fatigue performances,such as wave load and pressure from cargo,the combination of different stress components,stress on concentration of local structure details,means stress,and the corrosive environments,there are different specifications with varying classification societies,leading to the different results from different fatigue assessment methods.This paper established the Det Norske Veritas(DNV) classification notes "fatigue assessment of ship structures" that explains the process of fatigue assessment and simplified methods.Finally,a fatigue analysis was performed by use data of a real ship and the reliability of the result was assessed.展开更多
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc...The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.展开更多
The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is supported by a cable-net structure, whose change in shape leads to a stress range of approximately 500 MPa. This stress range is more than twice th...The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is supported by a cable-net structure, whose change in shape leads to a stress range of approximately 500 MPa. This stress range is more than twice the standard recom- mended value. The cable-net structure is thus the most critical and fragile part of the FAST reflector system. In this study, we first search for a more appropriate deforma- tion strategy that reduces the stress amplitude generated by the process of changing shape. Second, we roughly estimate the tracking trajectory of the telescope during its service life, and conduct an extensive numerical investigation to assess the require- ments for fatigue resistance. Finally, we develop a new type of steel cable system that satisfies the cable requirements for construction of FAST.展开更多
The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring f...The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring forces, which are induced by wave excitation and transferred by the YOKE and the mooring support frame, may cause fatigue damage to the bow structure. Different from direct wave-in duced-forces, the mooring force consists of wave frequency force (WF) and 2nd dr aft low frequency force (LF) [3] , which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of moor ing forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distingui shed features of fatigue damage to the FPSO’s bow structure can be observed.展开更多
Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the sim...Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the simulation results,the influence of valve bridge structure and roof transition fillet dimension on fatigue strength are obtained.And a new valve bridge structure which can effectively improve the fatigue life is proposed.展开更多
The pinion bracket-assembly(PBA) is a major part of three gorges project(TGP) ship lift drive system. The static strength,fatigue strength and stress distribution of hinge pin of PBA were analyzed by ANSYS, and the st...The pinion bracket-assembly(PBA) is a major part of three gorges project(TGP) ship lift drive system. The static strength,fatigue strength and stress distribution of hinge pin of PBA were analyzed by ANSYS, and the structure of PBA was optimized. The results show that after the optimization, the maximum comprehensive stress is 259.59 MPa, the maximum fatigue cumulative damage of weld joints is 0.94 and the maximum vertical deformation of hinge pin is 0.14 mm. The elastic deformation, hydropneumatic spring cylinder(HSC) load response and the vibration characteristics of PBA were studied by the bearing test when PBA bore the load caused by different water level errors. The results indicate that when the water level of ship chamber ranges from 3.4 m to 3.6 m,the vertical elastic deformation of the pinion shaft is between-8.58 and 10.50 mm. When upward outage-load(1580 k N) is imposed by the test-rack, the vertical elastic deformation of the pinion shaft is 13.42 and 14.07 mm and HSC load response is 795.80-800.80 k N. In the process of imposing load on the pinion by the test-rack, the maximum vibration amplitude and acceleration of PBA internal components are 0.37° and 2.67 rad/s2, respectively; the maximum impact on the pin caused by vibration is 19.89 k N; the pinion shaft vertical displacement and HSC load response do not fluctuate. There is a great difference between the frequency of meshing force of the pinion and the rack(1.06 Hz) and first-order natural frequency of PBA(8.41 Hz), thus PBA will not resonate.From all above, PBA meets the static strength and fatigue strength requirements. The vibration of PBA internal components has no effect on the vertical displacement of the pinion shaft, HSC load response and smooth operation of PBA. There is a liner relationship in the ratio of 2:1 between the thrust imposed by the test-rack and HSC load, thus HSC can limit the load imposed on the pinion.展开更多
For the dynamics of wheel/rail and car body, lightweighting of bogie frames is one of main concerns of designers. Lightweighting of the bogie frames may reduce the fatigue strength and life, especially in heavy haul a...For the dynamics of wheel/rail and car body, lightweighting of bogie frames is one of main concerns of designers. Lightweighting of the bogie frames may reduce the fatigue strength and life, especially in heavy haul and high-speed conditions. In this work, full-scale fatigue and fracture experiments are performed to meet the design requirements of bogie frame of a high-speed electrical locomotive. Multi-axial stress-states of some dangerous points are found both in service and numerical calculation. The Von-Mises equivalent stress criterion is used to evaluate the strength. Then crack initiation and propagation detected during the test are described. The reason why the crack growth rate may become slow in the weld structure of the bogie frame is explained using a residual stress concept. Miner's accumulative damage rule and P-S-N curve are used to predict the life of the bogie frame under fatigue and fracture tests. The experimental approach and theoretical analysis give satisfactory results and design information.展开更多
The article presents Polish experience with cold recycling of asphalt pavements with the usage of bituminous emulsion and cement. In the 1990 s numerous roads in Poland required immediate reinforcement due to their si...The article presents Polish experience with cold recycling of asphalt pavements with the usage of bituminous emulsion and cement. In the 1990 s numerous roads in Poland required immediate reinforcement due to their significant degradation. Implementation of the cold recycling technology was one of the solutions to this problem. Cold recycled mixtures contain e beside the recycled asphalt pavement and aggregate e two different types of binding agents: bituminous emulsion and Portland cement. First Polish requirements were developed in the 1990 s and were based on the Marshall test. After several years of application of these requirements, numerous transverse cracks appeared on the pavements. Field investigation showed that the frequency of transverse cracking was not uniform on all evaluated sections and that the growth rate of the number of cracks was decreasing. The main reason of extensive cracking was the overly high amount of the Portland cement and insufficient amount of the bituminous emulsion. This led to production of very stiff mixtures, with dominance of hydraulic bonds, which behaved similarly to cement-treated mixtures. The idea of flexible cold recycled base course was not utilized. This experience motivated the Polish Road Administration to develop new requirements. Second part of the article presents the new requirements for cold recycling.New test methods as well as requirements concerning resistance to frost and water action were introduced in 2013. Implementing of the new requirements resulted in significant reduction in stiffness of the MCE mixtures. Values of stiffness modulus are even three times lower, which should significantly decrease the amount of potential reflective cracks on the pavement surface. Presently two types of technology of cold recycling are used in Poland, in-place and in-plant.展开更多
文摘The effect of different initial microstructures deftned by γ' precipitate morphology has been investigated at the creep/fatigue conditions of 900℃ and 500 MPa. The wave form of stress as a function of time for cyclic load was of trapezoidal shape with a hold time of 10s at the upper stress level. The TEM was employed to examine the deformation process in strengthened γ' matrix in dependence of γ' precipitate morphology. The fracture lifetime and cycle number up to fracture were the criteria to evaluate the additional cyclic component efFect on the course of deformation
文摘Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasingly large ship dimensions,the greater attention should be paid to fatigue problems.Most research focuses on how to more easily access the fatigue strength of ships.Also,the major classification societies have already released their fatigue assessment notes.However,due to the complexity of factors influencing fatigue performances,such as wave load and pressure from cargo,the combination of different stress components,stress on concentration of local structure details,means stress,and the corrosive environments,there are different specifications with varying classification societies,leading to the different results from different fatigue assessment methods.This paper established the Det Norske Veritas(DNV) classification notes "fatigue assessment of ship structures" that explains the process of fatigue assessment and simplified methods.Finally,a fatigue analysis was performed by use data of a real ship and the reliability of the result was assessed.
文摘The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.
基金supported by the Young Scientist Project of the National Natural Science Foundation of China(Grant No.11303059)the Chinese Academy of Sciences Youth Innovation Promotion Association
文摘The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is supported by a cable-net structure, whose change in shape leads to a stress range of approximately 500 MPa. This stress range is more than twice the standard recom- mended value. The cable-net structure is thus the most critical and fragile part of the FAST reflector system. In this study, we first search for a more appropriate deforma- tion strategy that reduces the stress amplitude generated by the process of changing shape. Second, we roughly estimate the tracking trajectory of the telescope during its service life, and conduct an extensive numerical investigation to assess the require- ments for fatigue resistance. Finally, we develop a new type of steel cable system that satisfies the cable requirements for construction of FAST.
文摘The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring forces, which are induced by wave excitation and transferred by the YOKE and the mooring support frame, may cause fatigue damage to the bow structure. Different from direct wave-in duced-forces, the mooring force consists of wave frequency force (WF) and 2nd dr aft low frequency force (LF) [3] , which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of moor ing forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distingui shed features of fatigue damage to the FPSO’s bow structure can be observed.
基金Supported by the National Basic Research Program of China(613570303)
文摘Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the simulation results,the influence of valve bridge structure and roof transition fillet dimension on fatigue strength are obtained.And a new valve bridge structure which can effectively improve the fatigue life is proposed.
基金Project(SPKJ016-06)supported by the Key Research Project of State Power Corporation,ChinaProject(2004AC1O1D31)supported by the Key Scientific Research Project of Hubei Province,ChinaProject(0722018)supported by the China Three Gorges Corporation
文摘The pinion bracket-assembly(PBA) is a major part of three gorges project(TGP) ship lift drive system. The static strength,fatigue strength and stress distribution of hinge pin of PBA were analyzed by ANSYS, and the structure of PBA was optimized. The results show that after the optimization, the maximum comprehensive stress is 259.59 MPa, the maximum fatigue cumulative damage of weld joints is 0.94 and the maximum vertical deformation of hinge pin is 0.14 mm. The elastic deformation, hydropneumatic spring cylinder(HSC) load response and the vibration characteristics of PBA were studied by the bearing test when PBA bore the load caused by different water level errors. The results indicate that when the water level of ship chamber ranges from 3.4 m to 3.6 m,the vertical elastic deformation of the pinion shaft is between-8.58 and 10.50 mm. When upward outage-load(1580 k N) is imposed by the test-rack, the vertical elastic deformation of the pinion shaft is 13.42 and 14.07 mm and HSC load response is 795.80-800.80 k N. In the process of imposing load on the pinion by the test-rack, the maximum vibration amplitude and acceleration of PBA internal components are 0.37° and 2.67 rad/s2, respectively; the maximum impact on the pin caused by vibration is 19.89 k N; the pinion shaft vertical displacement and HSC load response do not fluctuate. There is a great difference between the frequency of meshing force of the pinion and the rack(1.06 Hz) and first-order natural frequency of PBA(8.41 Hz), thus PBA will not resonate.From all above, PBA meets the static strength and fatigue strength requirements. The vibration of PBA internal components has no effect on the vertical displacement of the pinion shaft, HSC load response and smooth operation of PBA. There is a liner relationship in the ratio of 2:1 between the thrust imposed by the test-rack and HSC load, thus HSC can limit the load imposed on the pinion.
基金Supported by the Key Technologies R&D Programme (No. 85402-02-03)
文摘For the dynamics of wheel/rail and car body, lightweighting of bogie frames is one of main concerns of designers. Lightweighting of the bogie frames may reduce the fatigue strength and life, especially in heavy haul and high-speed conditions. In this work, full-scale fatigue and fracture experiments are performed to meet the design requirements of bogie frame of a high-speed electrical locomotive. Multi-axial stress-states of some dangerous points are found both in service and numerical calculation. The Von-Mises equivalent stress criterion is used to evaluate the strength. Then crack initiation and propagation detected during the test are described. The reason why the crack growth rate may become slow in the weld structure of the bogie frame is explained using a residual stress concept. Miner's accumulative damage rule and P-S-N curve are used to predict the life of the bogie frame under fatigue and fracture tests. The experimental approach and theoretical analysis give satisfactory results and design information.
基金supported by the project RID-1A (DZP/ RID-I-06/1/NCBR/2016) financed by the National Center for Research and Development and the General Directorate for National Roads and Motorways under the program “Development of Road Innovations”
文摘The article presents Polish experience with cold recycling of asphalt pavements with the usage of bituminous emulsion and cement. In the 1990 s numerous roads in Poland required immediate reinforcement due to their significant degradation. Implementation of the cold recycling technology was one of the solutions to this problem. Cold recycled mixtures contain e beside the recycled asphalt pavement and aggregate e two different types of binding agents: bituminous emulsion and Portland cement. First Polish requirements were developed in the 1990 s and were based on the Marshall test. After several years of application of these requirements, numerous transverse cracks appeared on the pavements. Field investigation showed that the frequency of transverse cracking was not uniform on all evaluated sections and that the growth rate of the number of cracks was decreasing. The main reason of extensive cracking was the overly high amount of the Portland cement and insufficient amount of the bituminous emulsion. This led to production of very stiff mixtures, with dominance of hydraulic bonds, which behaved similarly to cement-treated mixtures. The idea of flexible cold recycled base course was not utilized. This experience motivated the Polish Road Administration to develop new requirements. Second part of the article presents the new requirements for cold recycling.New test methods as well as requirements concerning resistance to frost and water action were introduced in 2013. Implementing of the new requirements resulted in significant reduction in stiffness of the MCE mixtures. Values of stiffness modulus are even three times lower, which should significantly decrease the amount of potential reflective cracks on the pavement surface. Presently two types of technology of cold recycling are used in Poland, in-place and in-plant.