Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I...Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.展开更多
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests...Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition.展开更多
It is assumed that a pipeline is laid through a vertical fault fracture zone, and is excited by seismic ground motion modelled as stationary stochastic process. For horizontal incidence of waves, the cross-PSD (Power...It is assumed that a pipeline is laid through a vertical fault fracture zone, and is excited by seismic ground motion modelled as stationary stochastic process. For horizontal incidence of waves, the cross-PSD (Power Spectral Density) function is developed using wave propagation theory, while for vertical incidence of waves the cross-PSD function is composed by auto-PSD model, coherence model and site response model. As the seismic input, the eross-PSD function is used to calculate the the axial and lateral seismic responses of underground pipeline through the fracture zone. The results show that the incident directions of seismic waves, width and soil property of the fracture zone have great influence on underground pipeline. It is suggested that the flexible joints with appropriate stiffness should be added into the pipeline near the interfaces between the fracture zone and the surrounded media.展开更多
Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North ...Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North China Craton(NCC),may have preserved records of the NCC’s tectonic history.Borehole television survey and hydraulic fracturing were conducted to analyze the paleo and present tectonic stress fields.Three groups of tensile fractures were identified via borehole television,their azimuths being NNW-SSE,NW-SE and NE-SW,representing multiple stages of tectonic events.Hydraulic fracturing data indicates that the study region is experiencing NEE-SWW-oriented compression and nearly-N-Soriented extension,in accordance with strike-slip and compression.Since the Cretaceous,the orientation of the extensional stress has evolved counterclockwise and sequentially from nearly-NW-SE-oriented to NE-SW-oriented and even nearly N-S-oriented,the stress state having transitioned from strike-slip-extension to strike-slip-compression,in association with the rotating and oblique subduction of the Pacific Plate beneath the NCC,with the participation of the Indian Plate.展开更多
For four centuries now, southern Ghana has been known to be seismically active, and there is no clear geological explanation for the cause of the seismicity. By evaluating new field data and information with re-interp...For four centuries now, southern Ghana has been known to be seismically active, and there is no clear geological explanation for the cause of the seismicity. By evaluating new field data and information with re-interpreted historical earthquake data of southern Ghana, the nature of the seismicity of southern Ghana has been elucidated. The mutual connection between the earthquake epicentres and the remote causes by Mid-Atlantic transform faults and fracture zones has been established. The seismic regions of southern Ghana have been linked separately to tectonic faults and activities of the St. Paul’s and Romanche transform-fracture zone systems offshore in the Gulf of Guinea to onshore. It is concluded that the seismicity of southern Ghana is due to tectonic activities of the St. Paul’s and Romanche transform-fracture systems. The Accra region earthquakes originate from reactivation of faults in the Romanche transform-fracture zone, and propagate onshore through Accra and environs. The Axim region earthquakes come from reactivated faults linked to the St Paul’s fracture zone, which go through southern Cote D’Ivoire to Ghana. Seismotectonic movements along the St Paul’s transform and fracture zones have quieted since 1879. But movement along the Romanche Transform fault and Fracture zone is active, causing ongoing seismicity of southern Ghana.展开更多
Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well a...Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well as its seismogenic tectonics and preparation process, have been studied. The paper summarizes the results of studies on location of the earthquake’s macroscopic epicenter, magnitude and co-seismic fracture, with emphasis on the distribution range, type, extent and mechanism of its co-seismic fractures. The research reveals that, (1) the major part of the meizoseismal area of the South Wudu earthquake is located between Wudu and Wenxian in southern Gansu Province. It extends in a NEE direction, its shape is elliptical with the major axis about 70km long and the minor axis 30km. The macroscopic epicenter is located in the vicinity of Baoziba, in the east of the meizoseismal area; (2) three co-seismic fracture belts developed in the meizoseismal area, scattering northeastwards and converging southwestwards; (3) the major fracture belt extends from Baishuijiang at Hanan on the west, to the the bank areas of Bailongjiang river on the east, such as Gushuizi, Toufang and Daoqizi, etc.; (4) the co-seismic fractures consist of earthquake fissure, scarp, bulge, landslide, barrier lake and so on, among which landslides are the most obvious phenomenon; (5) according to the location, geometry and mechanism of the fracture, it is assumed that the co-seismic fracture zone of the South Wudu earthquake is the product of left-lateral strike-slip, associated with a dip-slip in the Hanan-Daoqizi-Maopola fault zone; (6) based on the size of the co-seismic fracture and the observed amount of displacement of the seismogenic fault of the South Wudu earthquake, the magnitude of this event is estimated to be M8.0.展开更多
To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W...To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.展开更多
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu...It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.展开更多
In this paper, the analysis of faults with different scales and orientations reveals that the distribution of fractures always develops toward a higher degree of similarity with faults, and a method for calculating th...In this paper, the analysis of faults with different scales and orientations reveals that the distribution of fractures always develops toward a higher degree of similarity with faults, and a method for calculating the multiscale areal fracture density is proposed using fault-fracture self-similarity theory. Based on the fracture parameters observed in cores and thin sections, the initial apertures of multiscale fractures are determined using the constraint method with a skewed distribution. Through calculations and statistical analyses of in situ stresses in combination with physical experiments on rocks, a numerical geomechanical model of the in situ stress field is established. The fracture opening ability under the in situ stress field is subsequently analyzed. Combining the fracture aperture data and areal fracture density at different scales, a calculation model is proposed for the prediction of multiscale and multiperiod fracture parameters, including the fracture porosity, the magnitude and direction of maximum permeability and the flow conductivity. Finally, based on the relationships among fracture aperture,density, and the relative values of fracture porosity and permeability, a fracture development pattern is determined.展开更多
The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the...The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the mechanical properties of the rock and elastic wave propagation,resulting in equally varying seismic responses at different scales.The geometrical characterisation of adjacent outcrop discontinuity networks allows a better understanding of the nature of the subsurface rocks and aids seismic interpretation.In this study,we characterise the discontinuity network of the Balmuccia peridotite(BP)in the IvreaeVerbano Zone(IVZ),northwestern Italy.This geological body is the focus of the Drilling the Ivrea eVerbano zonE(DIVE),an international continental scientific drilling project,and two active seismic surveys,SEismic imaging of the Ivrea ZonE(SEIZE)and high-resolution SEIZE(Hi-SEIZE),which aim to resolve the subsurface structure of the DIVE drilling target through high-resolution seismic imaging.For fracture characterisation,we developed two drone-based digital outcrop models(DOMs)at two different resolutions(10^(-3)-10 m and 10^(-1)-10^(3)m),which allowed us to quantitatively characterise the orientation,size,and intensity of the main rock discontinuities.These properties affect the seismic velocity and consequently the interpretation of the seismic data.We found that(i)the outcropping BP discontinuity network is represented by three more sets of fractures with respect to those reported in the literature;(ii)the discontinuity sizes follow a power-law distribution,indicating similarity across scales,and(iii)discontinuity intensity is not uniformly distributed along the outcrop.Our results help to explain the seismic behaviour of the BP detected by the SEIZE survey,suggesting that the low P-wave velocities observed can be related to the discontinuity network,and provide the basic topological parameters(orientation,density,distribution,and aperture)of the fracture network unique to the BP.These,in turn,can be used for interpretation of the Hi-SEIZE seismic survey and forward modelling of the seismic response.展开更多
Induced seismicity is strongly related to various engineering projects that cause anthropogenic in-situ stress change at a great depth.Hence,there is a need to estimate and mitigate the associated risks.In the past,va...Induced seismicity is strongly related to various engineering projects that cause anthropogenic in-situ stress change at a great depth.Hence,there is a need to estimate and mitigate the associated risks.In the past,various simulation methods have been developed and applied to induced seismicity analysis,but there is still a fundamental diference between simulation results and feld observations in terms of the spatial distribution of seismic events and its frequency.The present study aims to develop a method to simulate spatially distributed on-fault seismicity whilst reproducing a complex stress state in the fault zone.Hence,an equivalent continuum model is constructed,based on a discrete fracture network within a fault damage zone,by employing the crack tensor theory.A fault core is simulated at the center of the model as a discontinuous plane.Using the model,a heterogeneous stress state with stress anomalies in the fault zone is frst simulated by applying tractions on the model outer boundaries.Subsequently,the efective normal stress on the fault plane is decreased in a stepwise manner to induce slip.The simulation result is validated in terms of the b-value and other seismic source parameters,hence demonstrating that the model can reproduce spatially and temporally distributed on-fault seismicity.Further analysis on the parameters shows the variation of frequency-magnitude distribution before the occurrence of large seismic events.This variation is found to be consistent with feld observations,thus suggesting the potential use of this simulation method in evaluating the risk for seismic hazards in various engineering projects.展开更多
An electrical resistivity and electromagnetic emission survey was carried out involving the use of vertical electrical soundings (VES) and natural pulse electromagnetic field of the earth (NPEMFE). The use of this new...An electrical resistivity and electromagnetic emission survey was carried out involving the use of vertical electrical soundings (VES) and natural pulse electromagnetic field of the earth (NPEMFE). The use of this new methodology managed to detect the fracture flow system rupture zones in the underground, also answered the questions about the deferent subsurface water bodies. The present study focuses on Marsaba-Feshcha sub-basin in the northeast of the Dead Sea. Due to the scarcity of boreholes in the study area, several geophysical methods were implanted. The combination of these two methods (VES and NPEMFE) with the field observations and East-West transversal faults with the coordination (624437/242888) was determined, cutting through the anticlines with their mainly impervious cores with fracture length of >400 m. These transversal faults saddle inside Nabi Musa syncline (Boqea syncline), leading to a hydraulic connection between the Lower and the Upper Aquifer. Due to the identified transversal fault, the water of the Upper and Lower Aquifer mixed and emerged as springs at Ein Feshcha group.展开更多
The concept of earthquake tourism resources was defined.With the view of disaster economics,the theory of to tourism plan and the systematic methods,the earthquake tourism resources produced by '5.12' Wenchuan...The concept of earthquake tourism resources was defined.With the view of disaster economics,the theory of to tourism plan and the systematic methods,the earthquake tourism resources produced by '5.12' Wenchuan earthquake were analyzed.The developmental principles and general ideas of the earthquake tourism resources were put forward.The framing proposals were provided on complementation,coordination and integration about the development of the earthquake tourism products in the whole fault zone of Longmen Mountain.展开更多
Nanoparticles are widely observed in the natural shear zone and experimental slip faults, which can lubricate the fault and significantly reduce the friction coefficient during seismic slip. But it is still not clear ...Nanoparticles are widely observed in the natural shear zone and experimental slip faults, which can lubricate the fault and significantly reduce the friction coefficient during seismic slip. But it is still not clear how the nanoparticles develop during the process of sliding. Clarifying the development stage of nanoparticles in a fault zone is critical to understanding the formation mechanisms of nanoparticles and the mechanism of fault weakening from a nanoperspective. In this study, four types of nanoparticles were found in the Indosinian Xiaomei shear zone, including spherical nanoparticles, rod-like nanograins and their aggregations. Ultramicroscopic analyses indicate that polished patches are highly smooth and composed of tightly packed spherical nanoparticles and well orientated rod-like nanograins during slip at high velocities. Meanwhile, the dome nanoparticles were formed by the calcite thermal decomposition due to frictional heat during highspeed sliding. The polygonal grooves are possibly related to high temperature(>900℃) grain boundary sliding deformation mechanisms. However, the porous and rough surfaces are accompanied by a series of holes and parallel "scratches" during a subsequent low-velocity stage. To ascertain the chemical composition of these nanoparticles, the energy dispersive spectrometer(EDS) test were conducted. The results suggest that materials rich in Fe, MgO and wollastonite are likely to form the rod-like nanograins, while materials rich in SiO2 are likely to form the spherical nanoparticles.展开更多
The in-situ hydraulic fracturing stress measurements have been carried out around the coastal marginal land in Fu- jian Province. And the characteristics of magnitude, direction and distribution of tectonic stress hav...The in-situ hydraulic fracturing stress measurements have been carried out around the coastal marginal land in Fu- jian Province. And the characteristics of magnitude, direction and distribution of tectonic stress have been obtained. Based on the observed stress data, the characteristics and activities of fault zones are analyzed and studied in the paper according to the Coulomb friction criteria. 1 The maximum horizontal principal compressive stress is in the NW-WNW direction from the north to the south along the coastline verge, which is parallel to the strike of the NW-trending fault zone, consistent with the direction of principal compressive stress obtained from geological structure and across-fault deformation data, and different from that reflected by focal mechanism solution by about 20°. 2 The horizontal principal stress increases with depth, the relation among three stresses is SH>Sv>Sh or SH≈Sv>Sh, and the stress state is liable to normal fault and strike-slip fault activities. 3 According to Coulomb friction criteria and taking the friction strength μ as 0.6~1.0 for analysis, the stress state reaching or exceeding the threshold for normal-fault frictional sliding near the fault implies that the current tectonic activity in the measuring area is mainly normal faulting. 4 The force source of current tectonic stress field comes mainly from the westward and northwestward horizontal extrusions from the Pacific and Philippine Plates respectively to the Eurasian Plate.展开更多
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110304)the Na-tional Natural Science Foundation of China(Grant Nos.42077246 and 52278412).
文摘Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.
基金supported by the National Natural Science Foundation of China,NSFC(No.42202318).
文摘Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition.
文摘It is assumed that a pipeline is laid through a vertical fault fracture zone, and is excited by seismic ground motion modelled as stationary stochastic process. For horizontal incidence of waves, the cross-PSD (Power Spectral Density) function is developed using wave propagation theory, while for vertical incidence of waves the cross-PSD function is composed by auto-PSD model, coherence model and site response model. As the seismic input, the eross-PSD function is used to calculate the the axial and lateral seismic responses of underground pipeline through the fracture zone. The results show that the incident directions of seismic waves, width and soil property of the fracture zone have great influence on underground pipeline. It is suggested that the flexible joints with appropriate stiffness should be added into the pipeline near the interfaces between the fracture zone and the surrounded media.
基金supported by the National Natural Science Foundation of China(Grant No.41574088)the Key Program of Chinese Central Government for Basic Scientific Research Operations in Commonwealth Research Institutes(Grant No.ZDJ2019-16)。
文摘Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North China Craton(NCC),may have preserved records of the NCC’s tectonic history.Borehole television survey and hydraulic fracturing were conducted to analyze the paleo and present tectonic stress fields.Three groups of tensile fractures were identified via borehole television,their azimuths being NNW-SSE,NW-SE and NE-SW,representing multiple stages of tectonic events.Hydraulic fracturing data indicates that the study region is experiencing NEE-SWW-oriented compression and nearly-N-Soriented extension,in accordance with strike-slip and compression.Since the Cretaceous,the orientation of the extensional stress has evolved counterclockwise and sequentially from nearly-NW-SE-oriented to NE-SW-oriented and even nearly N-S-oriented,the stress state having transitioned from strike-slip-extension to strike-slip-compression,in association with the rotating and oblique subduction of the Pacific Plate beneath the NCC,with the participation of the Indian Plate.
文摘For four centuries now, southern Ghana has been known to be seismically active, and there is no clear geological explanation for the cause of the seismicity. By evaluating new field data and information with re-interpreted historical earthquake data of southern Ghana, the nature of the seismicity of southern Ghana has been elucidated. The mutual connection between the earthquake epicentres and the remote causes by Mid-Atlantic transform faults and fracture zones has been established. The seismic regions of southern Ghana have been linked separately to tectonic faults and activities of the St. Paul’s and Romanche transform-fracture zone systems offshore in the Gulf of Guinea to onshore. It is concluded that the seismicity of southern Ghana is due to tectonic activities of the St. Paul’s and Romanche transform-fracture systems. The Accra region earthquakes originate from reactivation of faults in the Romanche transform-fracture zone, and propagate onshore through Accra and environs. The Axim region earthquakes come from reactivated faults linked to the St Paul’s fracture zone, which go through southern Cote D’Ivoire to Ghana. Seismotectonic movements along the St Paul’s transform and fracture zones have quieted since 1879. But movement along the Romanche Transform fault and Fracture zone is active, causing ongoing seismicity of southern Ghana.
文摘Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well as its seismogenic tectonics and preparation process, have been studied. The paper summarizes the results of studies on location of the earthquake’s macroscopic epicenter, magnitude and co-seismic fracture, with emphasis on the distribution range, type, extent and mechanism of its co-seismic fractures. The research reveals that, (1) the major part of the meizoseismal area of the South Wudu earthquake is located between Wudu and Wenxian in southern Gansu Province. It extends in a NEE direction, its shape is elliptical with the major axis about 70km long and the minor axis 30km. The macroscopic epicenter is located in the vicinity of Baoziba, in the east of the meizoseismal area; (2) three co-seismic fracture belts developed in the meizoseismal area, scattering northeastwards and converging southwestwards; (3) the major fracture belt extends from Baishuijiang at Hanan on the west, to the the bank areas of Bailongjiang river on the east, such as Gushuizi, Toufang and Daoqizi, etc.; (4) the co-seismic fractures consist of earthquake fissure, scarp, bulge, landslide, barrier lake and so on, among which landslides are the most obvious phenomenon; (5) according to the location, geometry and mechanism of the fracture, it is assumed that the co-seismic fracture zone of the South Wudu earthquake is the product of left-lateral strike-slip, associated with a dip-slip in the Hanan-Daoqizi-Maopola fault zone; (6) based on the size of the co-seismic fracture and the observed amount of displacement of the seismogenic fault of the South Wudu earthquake, the magnitude of this event is estimated to be M8.0.
基金supported by the National Natural Science Foundation of China (No. 41004054) Research Fund for the Doctoral Program of Higher Education of China (No. 20105122120002)Natural Science Key Project, Sichuan Provincial Department of Education (No. 092A011)
文摘To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.
基金the National Basic Research Program of China(No.2007CB209401) for its financial support
文摘It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.
基金supported by the Fundamental Research Funds for the Central Universities (2652017308)the National Natural Science Foundation of China (Grant Nos. 41372139 and 41072098)the National Science and Technology Major Project of China (2016ZX05046-003-001 and 2016ZX05034-004003)
文摘In this paper, the analysis of faults with different scales and orientations reveals that the distribution of fractures always develops toward a higher degree of similarity with faults, and a method for calculating the multiscale areal fracture density is proposed using fault-fracture self-similarity theory. Based on the fracture parameters observed in cores and thin sections, the initial apertures of multiscale fractures are determined using the constraint method with a skewed distribution. Through calculations and statistical analyses of in situ stresses in combination with physical experiments on rocks, a numerical geomechanical model of the in situ stress field is established. The fracture opening ability under the in situ stress field is subsequently analyzed. Combining the fracture aperture data and areal fracture density at different scales, a calculation model is proposed for the prediction of multiscale and multiperiod fracture parameters, including the fracture porosity, the magnitude and direction of maximum permeability and the flow conductivity. Finally, based on the relationships among fracture aperture,density, and the relative values of fracture porosity and permeability, a fracture development pattern is determined.
基金the Swiss National Science Foundation for the grant PP00P2_187199 of project OROG3NY.
文摘The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the mechanical properties of the rock and elastic wave propagation,resulting in equally varying seismic responses at different scales.The geometrical characterisation of adjacent outcrop discontinuity networks allows a better understanding of the nature of the subsurface rocks and aids seismic interpretation.In this study,we characterise the discontinuity network of the Balmuccia peridotite(BP)in the IvreaeVerbano Zone(IVZ),northwestern Italy.This geological body is the focus of the Drilling the Ivrea eVerbano zonE(DIVE),an international continental scientific drilling project,and two active seismic surveys,SEismic imaging of the Ivrea ZonE(SEIZE)and high-resolution SEIZE(Hi-SEIZE),which aim to resolve the subsurface structure of the DIVE drilling target through high-resolution seismic imaging.For fracture characterisation,we developed two drone-based digital outcrop models(DOMs)at two different resolutions(10^(-3)-10 m and 10^(-1)-10^(3)m),which allowed us to quantitatively characterise the orientation,size,and intensity of the main rock discontinuities.These properties affect the seismic velocity and consequently the interpretation of the seismic data.We found that(i)the outcropping BP discontinuity network is represented by three more sets of fractures with respect to those reported in the literature;(ii)the discontinuity sizes follow a power-law distribution,indicating similarity across scales,and(iii)discontinuity intensity is not uniformly distributed along the outcrop.Our results help to explain the seismic behaviour of the BP detected by the SEIZE survey,suggesting that the low P-wave velocities observed can be related to the discontinuity network,and provide the basic topological parameters(orientation,density,distribution,and aperture)of the fracture network unique to the BP.These,in turn,can be used for interpretation of the Hi-SEIZE seismic survey and forward modelling of the seismic response.
文摘Induced seismicity is strongly related to various engineering projects that cause anthropogenic in-situ stress change at a great depth.Hence,there is a need to estimate and mitigate the associated risks.In the past,various simulation methods have been developed and applied to induced seismicity analysis,but there is still a fundamental diference between simulation results and feld observations in terms of the spatial distribution of seismic events and its frequency.The present study aims to develop a method to simulate spatially distributed on-fault seismicity whilst reproducing a complex stress state in the fault zone.Hence,an equivalent continuum model is constructed,based on a discrete fracture network within a fault damage zone,by employing the crack tensor theory.A fault core is simulated at the center of the model as a discontinuous plane.Using the model,a heterogeneous stress state with stress anomalies in the fault zone is frst simulated by applying tractions on the model outer boundaries.Subsequently,the efective normal stress on the fault plane is decreased in a stepwise manner to induce slip.The simulation result is validated in terms of the b-value and other seismic source parameters,hence demonstrating that the model can reproduce spatially and temporally distributed on-fault seismicity.Further analysis on the parameters shows the variation of frequency-magnitude distribution before the occurrence of large seismic events.This variation is found to be consistent with feld observations,thus suggesting the potential use of this simulation method in evaluating the risk for seismic hazards in various engineering projects.
文摘An electrical resistivity and electromagnetic emission survey was carried out involving the use of vertical electrical soundings (VES) and natural pulse electromagnetic field of the earth (NPEMFE). The use of this new methodology managed to detect the fracture flow system rupture zones in the underground, also answered the questions about the deferent subsurface water bodies. The present study focuses on Marsaba-Feshcha sub-basin in the northeast of the Dead Sea. Due to the scarcity of boreholes in the study area, several geophysical methods were implanted. The combination of these two methods (VES and NPEMFE) with the field observations and East-West transversal faults with the coordination (624437/242888) was determined, cutting through the anticlines with their mainly impervious cores with fracture length of >400 m. These transversal faults saddle inside Nabi Musa syncline (Boqea syncline), leading to a hydraulic connection between the Lower and the Upper Aquifer. Due to the identified transversal fault, the water of the Upper and Lower Aquifer mixed and emerged as springs at Ein Feshcha group.
文摘The concept of earthquake tourism resources was defined.With the view of disaster economics,the theory of to tourism plan and the systematic methods,the earthquake tourism resources produced by '5.12' Wenchuan earthquake were analyzed.The developmental principles and general ideas of the earthquake tourism resources were put forward.The framing proposals were provided on complementation,coordination and integration about the development of the earthquake tourism products in the whole fault zone of Longmen Mountain.
基金the National Natural Science Foundation of China(Nos.41776072,41676048,U1701641,91328205)。
文摘Nanoparticles are widely observed in the natural shear zone and experimental slip faults, which can lubricate the fault and significantly reduce the friction coefficient during seismic slip. But it is still not clear how the nanoparticles develop during the process of sliding. Clarifying the development stage of nanoparticles in a fault zone is critical to understanding the formation mechanisms of nanoparticles and the mechanism of fault weakening from a nanoperspective. In this study, four types of nanoparticles were found in the Indosinian Xiaomei shear zone, including spherical nanoparticles, rod-like nanograins and their aggregations. Ultramicroscopic analyses indicate that polished patches are highly smooth and composed of tightly packed spherical nanoparticles and well orientated rod-like nanograins during slip at high velocities. Meanwhile, the dome nanoparticles were formed by the calcite thermal decomposition due to frictional heat during highspeed sliding. The polygonal grooves are possibly related to high temperature(>900℃) grain boundary sliding deformation mechanisms. However, the porous and rough surfaces are accompanied by a series of holes and parallel "scratches" during a subsequent low-velocity stage. To ascertain the chemical composition of these nanoparticles, the energy dispersive spectrometer(EDS) test were conducted. The results suggest that materials rich in Fe, MgO and wollastonite are likely to form the rod-like nanograins, while materials rich in SiO2 are likely to form the spherical nanoparticles.
基金National Development and Reform Commission [2004]1138.
文摘The in-situ hydraulic fracturing stress measurements have been carried out around the coastal marginal land in Fu- jian Province. And the characteristics of magnitude, direction and distribution of tectonic stress have been obtained. Based on the observed stress data, the characteristics and activities of fault zones are analyzed and studied in the paper according to the Coulomb friction criteria. 1 The maximum horizontal principal compressive stress is in the NW-WNW direction from the north to the south along the coastline verge, which is parallel to the strike of the NW-trending fault zone, consistent with the direction of principal compressive stress obtained from geological structure and across-fault deformation data, and different from that reflected by focal mechanism solution by about 20°. 2 The horizontal principal stress increases with depth, the relation among three stresses is SH>Sv>Sh or SH≈Sv>Sh, and the stress state is liable to normal fault and strike-slip fault activities. 3 According to Coulomb friction criteria and taking the friction strength μ as 0.6~1.0 for analysis, the stress state reaching or exceeding the threshold for normal-fault frictional sliding near the fault implies that the current tectonic activity in the measuring area is mainly normal faulting. 4 The force source of current tectonic stress field comes mainly from the westward and northwestward horizontal extrusions from the Pacific and Philippine Plates respectively to the Eurasian Plate.