The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn...The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.展开更多
Based on the interpretation of two-dimensional seismic data, this paper analyzes the characteristics of three boundary fault systems including the Shajingzi fault, the Aqia fault and the Tumuxiuke fault around the Awa...Based on the interpretation of two-dimensional seismic data, this paper analyzes the characteristics of three boundary fault systems including the Shajingzi fault, the Aqia fault and the Tumuxiuke fault around the Awati sag of the Tarim Basin, and studies its controlling on hydrocarbon accumulation. Neotectonic movement is ubiquitous in oil and gas bearing basins in China, such as Neogene intense activities of large boundary thrusting faults of the Awati sag: Shajingzi fault, Aqia fault and Tumuxiuke fault. Based on a large number of seismic data, it is showed that they have section wise characteristics in the direction of fault strike, and active periods and associated structures formed of different sections are different. Usually, large anticlinal structures are formed in the upper wall, and faulted anticline controlled by companion faults are formed in the bottom wall. Large faults cut the strata from Cambrian up to Neogene. For the anticline in the upper wall, fault activities caused by neotectonic movement played a destructive role in hydrocarbon accumulation, thus the preservation condition is critical for reservoir formation. In this sense, attention should be paid to formations in the upper walls of Aqia fault and Tumuxiuke fault under the Cambrian salt bed, whose plastic deformation could help to heal faults. Companion faults in the bottom wall cut down to the Cambrian and up to the Triassic serving as the pathway for hydrocarbon migration, and associated structures in the bottom wall are noteworthy exploration targets.展开更多
The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depr...The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.展开更多
Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution...Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution, however. The difference in burial depth of the reservoirs between east and west sides is up to 1000 m. Water-bearing formations exist between oil- and gas-bearing formations vertically and water-producing wells are drilled between oil- and gas-producing wells. Macroscopically, oil and gas occur at low positions, while water occurs at high positiona on the northern slope of Tazhong uplift. The mechanism of differential hydrocarbon enrichment in heterogeneous reservoirs is by far not clarified, which has affected the efficient exploration and development of oil and gas fields in this area.展开更多
Endorheic basins(ENBs) are inland drainage basins allowing no outflow to oceans.These basins in the active mountain chains of the convergence zones are under the influence of compressional tectonic activity and climat...Endorheic basins(ENBs) are inland drainage basins allowing no outflow to oceans.These basins in the active mountain chains of the convergence zones are under the influence of compressional tectonic activity and climate condition.The Zagros Mountains of Iran is one of the youngest convergence zones in which continental-continental collision has occurred.In this paper we hypothesize the formation of ENBs among the Zagros range after the epeirogenic stage in the Late Paleogene-Early Neogene.Due to tectonic activity and Quaternary climatic conditions,the ENBs pass the transition stage to exorheic,and still,some tectonic depressions are not linked to the evolutionary process of exorheic drainage of Zagros.The geometry of the drainage network of Kul and Mond basins in Fars arch shows that 67% of their water gaps are located along the thrusts and transverse basement faults in the east and west of the Fars arch.Geometrically,the Kul and Mond basins form triangles with their sides matching with the edges of the Arabian Plate where the major inherited faults of Arabian plate controls the shape of the Zagros basin and a low strain zone along the Razak fault with lower salt tectonic activity,where the wind gaps are created.The ENBs are located in the rainshadow slopes,but the Kul and Mond basins are located in the upwind slopes of rain waves.This factor and the heavy rains of the basin lead to increase of the erosion potential,destruction of depressions,and floods and consequently,the funnel-shaped gaps have a significant impact on the flood flow.展开更多
Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon...Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon generation, migration and accumulation, contains significantly different hydrocarbon generation conditions and enrichment degree. On the basis of previous documents and a large number of statistical data, this work comparatively analyzed the differential hydrocarbon enrichment and its major controlling factors in depressions of the Bohai Bay Basin. The results show that depressions in the Bohai Bay Basin have various hydrocarbon enrichment degrees, and can be categorized into four types, namely enormously oil-rich, oil-rich, oily and oil-poor depressions. In general, the enormously oil-rich and oil-rich depressions are distributed in the eastern part of the basin along the Tan-Lu and Lan-Liao faults, whereas depressions in the western part of the basin are poor in hydrocarbons. Moreover, the vertical distribution of hydrocarbons is also highly heterogeneous, with Pre-Paleogene strata rich in hydrocarbons in the northern and western depressions, Paleogene strata rich in hydrocarbons in the entire basin, and Neogene strata rich in hydrocarbons in the off-shore areas of the Bohai Bay Basin. From early depressions in onshore areas to the late depressions in offshore areas of the Bohai Bay Basin, the source rocks and source-reservoir-cap rock assemblages gradually become younger and shallower, and the hydrocarbon resource abundance gradually increases. Hydrocarbon supplying condition is the key factor constraining the hydrocarbon enrichment for different depressions,while the main source-reservoir-cap rock assemblage, sufficient hydrocarbons and the transportation capacity of faults control the vertical distribution of hydrocarbons. The main factors controlling hydrocarbon enrichment are different for different layers. The hydrocarbon supplying condition of source rocks is the key controlling factor, whereas the source-reservoir configuration, the main sourcereservoir-cap rock assemblages, and the fault transportation are the main factors of hydrocarbon enrichment in the Paleogene, Paleogene and Neogene, respectively.展开更多
In the Qiongdongnan Basin, faults are well developed.Based on the drilling results, the traps controlled two or more faults are oil-rich. However, when only one fault cut through the sand body, there is no sign for hy...In the Qiongdongnan Basin, faults are well developed.Based on the drilling results, the traps controlled two or more faults are oil-rich. However, when only one fault cut through the sand body, there is no sign for hy-drocarbon accumulation in the sandstone. In terms of this phenomenon, the principle of reservoir-forming controlled by fault terrace is proposed, i.e., when the single fault activates, because of the incompressibility of pore water, the resistance of pore and the direction of buoyancy, it is impossible for hydrocarbon to ac-cumulate in sandstone. But when there are two or more faults, one of the faults acts as the spillway so the hydrocarbon could fill in the pore of sandstone through other faults. In total five gas bearing structures and four failure traps are considered, as examples to demonstrate our findings. According to this theory, it is well-advised that south steep slope zone of Baodao-Changchang Depression, south gentle slope zone of Lingshui Depression, north steep slope zone of Lingshui Depression, and north steep slope zone of Baodao Depression are the most favorable step-fault zones, which are the main exploration direction in next stage.展开更多
Based on seismic and logging data,taking the downthrow fault nose of Binhai fault in Qikou Sag as the object of study,we analyzed fault characteristics,sand body distribution,fault-sand combinations and hydrocarbon ac...Based on seismic and logging data,taking the downthrow fault nose of Binhai fault in Qikou Sag as the object of study,we analyzed fault characteristics,sand body distribution,fault-sand combinations and hydrocarbon accumulation to reveal the hydrocarbon enrichment law in the fault-rich area of fault depression lake basin.The results show that the Binhai Cenozoic fault nose is characterized by east-west zoning,the main part of the western fault segment is simple in structure,whereas the broom-shaped faults in the eastern segment are complex in structure,including several groups of faults.The difference of fault evolution controls the spatial distribution of sand bodies.The sand bodies are in continuous large pieces in the downthrow fault trough belt along the Gangdong Fault in the middle segment of the fault nose,forming consequent fault-sand combination;whereas the fault activity period of the eastern part of the fault nose was later,and the sand bodies controlled by paleogeomorphology are distributed in multi-phase north-south finger-shaped pattern,forming vertical fault-sand combination pattern matching with the fault.The configuration between faults and sand bodies,and oil sources and caprocks determine the vertical conductivity,plane distribution and vertical distribution of oil and gas.Two oil and gas accumulation modes,i.e.single main fault hydrocarbon supply-fault sand consequent matching-oil accumulation in multi-layers stereoscopically and fault system transportation-fault sand vertical matching-oil accumulation in banded overlapping layers occur in the middle and eastern segments of the fault nose respectively,and they control the difference of oil and gas distribution and enrichment degree in the Binhai fault nose.展开更多
Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon a...Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon accumulation in the Tazhong uplift, Tarim Basin are investigated. The results show that the oil and gas in the Tazhong uplift has the characteristics of complex accumulation mainly controlled by faults, and more than 80% of the oil and gas reserves are enriched along fault zones. There are large thrust and strike-slip faults in the Tazhong uplift, and the coupling relationship between the formation and evolution of the faults and accumulation determine the difference in complex oil and gas accumulations. The active scale and stage of faults determine the fullness of the traps and the balance of the phase, that is, the blocking of the transport system, the insufficient filling of oil and gas, and the unsteady state of fluid accumulation are dependent on the faults. The multi-period tectonic sedimentary evolution controls the differences of trap conditions in the fault zones, and the multi-phase hydrocarbon migration and accumulation causes the differences of fluid distribution in the fault zones. The theory of differential oil and gas accumulation controlled by fault is the key to the overall evaluation, three-dimensional development and discovery of new reserves in the Tazhong uplift.展开更多
A series of parallel normal faults are distributed in the Helan Mountain-Yinchuan Basin tectonic belt,where a historical M8.0 earthquake occurred.It is rare that such a great earthquake occurs in a normal fault system...A series of parallel normal faults are distributed in the Helan Mountain-Yinchuan Basin tectonic belt,where a historical M8.0 earthquake occurred.It is rare that such a great earthquake occurs in a normal fault system within the continent.To deeply understand the fine structure of the normal fault system,we deployed 104 broadband temporary stations near the system,collected data from permanent stations and other temporary stations nearby,and obtained the high-precision threedimensional S-wave velocity structure beneath 206 stations via joint inversion of receiver function and surface wave.A typical graben-in-graben feature bounded by four major faults was identified in the Yinchuan Basin.We analyzed the seismicity in the normal fault system and found a seismic strip in the southern part of the basin,where there are significant changes in the sedimentary thickness,which is speculated to be the southern boundary of the normal fault system.There are significant differences in the crustal thickness and velocity structure in the crust on both sides of the boundary between the Helan Mountain and the Yinchuan Basin,and a low-velocity zone was identified in the upper mantle beneath this boundary,which could be related to the fact that the Helan Mountain-Yinchuan Basin tectonic belt is located between the Alxa Block and the Ordos Block.The M8.0 Yinchuan-Pingluo earthquake occurred at the junction of four major faults in the Yinchuan Basin,which was located in the high-velocity zone near the velocity transition zone at the basin-mountain boundary.The low-velocity zone in the upper mantle beneath this boundary may have promoted the nucleation of this earthquake.Based on evidence from geological drilling,micro seismicity,the regional stress field,and the velocity models obtained in this study,it is inferred that the eastern piedmont fault zone of the Helan Mountain was the seismogenic fault of the 1739 M8.0 Yinchuan-Pingluo earthquake.展开更多
Asymmetry of the Weihe Basin is discussed in the paper,and also the master control fault,secondary control fault of asymmetric basin is proposed in the paper.The asymmetry of the Weihe Basin is expressed as follows:(1...Asymmetry of the Weihe Basin is discussed in the paper,and also the master control fault,secondary control fault of asymmetric basin is proposed in the paper.The asymmetry of the Weihe Basin is expressed as follows:(1) its shape of the cross sections is asymmetrical;(2) the tectonic activity of the southern margin fault and the northern margin one is apparently different;(3) its deep tectonics is asymmetrical.Finally,we use the Weihe Basin as an example to establish a "cantilever-beam" model for calculations.The results show that:(1) flexure leads to stress accumulation and forming extensional fractures;(2) fractures slope steeply towards the free end;(3) when the length of beam becomes longer,it is possible that new extensional fractures will occur in the fixed end.展开更多
基金Supported by the PetroChina and Southwest Petroleum University Cooperation Project(2020CX010101)the National Natural ScienceFoundation of China(91955204).
文摘The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.
基金financially supported by China Geological Survey Project (12120115001801,1211302108022,DD20160169 and DD20190708)the National Natural Science Foundation of China (41072102).
文摘Based on the interpretation of two-dimensional seismic data, this paper analyzes the characteristics of three boundary fault systems including the Shajingzi fault, the Aqia fault and the Tumuxiuke fault around the Awati sag of the Tarim Basin, and studies its controlling on hydrocarbon accumulation. Neotectonic movement is ubiquitous in oil and gas bearing basins in China, such as Neogene intense activities of large boundary thrusting faults of the Awati sag: Shajingzi fault, Aqia fault and Tumuxiuke fault. Based on a large number of seismic data, it is showed that they have section wise characteristics in the direction of fault strike, and active periods and associated structures formed of different sections are different. Usually, large anticlinal structures are formed in the upper wall, and faulted anticline controlled by companion faults are formed in the bottom wall. Large faults cut the strata from Cambrian up to Neogene. For the anticline in the upper wall, fault activities caused by neotectonic movement played a destructive role in hydrocarbon accumulation, thus the preservation condition is critical for reservoir formation. In this sense, attention should be paid to formations in the upper walls of Aqia fault and Tumuxiuke fault under the Cambrian salt bed, whose plastic deformation could help to heal faults. Companion faults in the bottom wall cut down to the Cambrian and up to the Triassic serving as the pathway for hydrocarbon migration, and associated structures in the bottom wall are noteworthy exploration targets.
基金Supported by the National Natural Science Foundation of China(41602129,41602164)China National Science and Technology Major Project(2016ZX05007003,2016ZX05006-005)
文摘The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.
基金financially supported by the National Science Foundation of China(grant No.41372146)
文摘Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution, however. The difference in burial depth of the reservoirs between east and west sides is up to 1000 m. Water-bearing formations exist between oil- and gas-bearing formations vertically and water-producing wells are drilled between oil- and gas-producing wells. Macroscopically, oil and gas occur at low positions, while water occurs at high positiona on the northern slope of Tazhong uplift. The mechanism of differential hydrocarbon enrichment in heterogeneous reservoirs is by far not clarified, which has affected the efficient exploration and development of oil and gas fields in this area.
文摘Endorheic basins(ENBs) are inland drainage basins allowing no outflow to oceans.These basins in the active mountain chains of the convergence zones are under the influence of compressional tectonic activity and climate condition.The Zagros Mountains of Iran is one of the youngest convergence zones in which continental-continental collision has occurred.In this paper we hypothesize the formation of ENBs among the Zagros range after the epeirogenic stage in the Late Paleogene-Early Neogene.Due to tectonic activity and Quaternary climatic conditions,the ENBs pass the transition stage to exorheic,and still,some tectonic depressions are not linked to the evolutionary process of exorheic drainage of Zagros.The geometry of the drainage network of Kul and Mond basins in Fars arch shows that 67% of their water gaps are located along the thrusts and transverse basement faults in the east and west of the Fars arch.Geometrically,the Kul and Mond basins form triangles with their sides matching with the edges of the Arabian Plate where the major inherited faults of Arabian plate controls the shape of the Zagros basin and a low strain zone along the Razak fault with lower salt tectonic activity,where the wind gaps are created.The ENBs are located in the rainshadow slopes,but the Kul and Mond basins are located in the upwind slopes of rain waves.This factor and the heavy rains of the basin lead to increase of the erosion potential,destruction of depressions,and floods and consequently,the funnel-shaped gaps have a significant impact on the flood flow.
基金granted by the Important National Science&Technology Specific Projects(grants No.2011ZX05006-003 and 2016ZX05006-003)the National Natural Science Foundation(grant No.41372132)
文摘Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon generation, migration and accumulation, contains significantly different hydrocarbon generation conditions and enrichment degree. On the basis of previous documents and a large number of statistical data, this work comparatively analyzed the differential hydrocarbon enrichment and its major controlling factors in depressions of the Bohai Bay Basin. The results show that depressions in the Bohai Bay Basin have various hydrocarbon enrichment degrees, and can be categorized into four types, namely enormously oil-rich, oil-rich, oily and oil-poor depressions. In general, the enormously oil-rich and oil-rich depressions are distributed in the eastern part of the basin along the Tan-Lu and Lan-Liao faults, whereas depressions in the western part of the basin are poor in hydrocarbons. Moreover, the vertical distribution of hydrocarbons is also highly heterogeneous, with Pre-Paleogene strata rich in hydrocarbons in the northern and western depressions, Paleogene strata rich in hydrocarbons in the entire basin, and Neogene strata rich in hydrocarbons in the off-shore areas of the Bohai Bay Basin. From early depressions in onshore areas to the late depressions in offshore areas of the Bohai Bay Basin, the source rocks and source-reservoir-cap rock assemblages gradually become younger and shallower, and the hydrocarbon resource abundance gradually increases. Hydrocarbon supplying condition is the key factor constraining the hydrocarbon enrichment for different depressions,while the main source-reservoir-cap rock assemblage, sufficient hydrocarbons and the transportation capacity of faults control the vertical distribution of hydrocarbons. The main factors controlling hydrocarbon enrichment are different for different layers. The hydrocarbon supplying condition of source rocks is the key controlling factor, whereas the source-reservoir configuration, the main sourcereservoir-cap rock assemblages, and the fault transportation are the main factors of hydrocarbon enrichment in the Paleogene, Paleogene and Neogene, respectively.
基金The Key Projects in the National Science &Technology Pillar Program during the Twelfth Five-year Plan Period under contract No.2011ZX05025-002-05
文摘In the Qiongdongnan Basin, faults are well developed.Based on the drilling results, the traps controlled two or more faults are oil-rich. However, when only one fault cut through the sand body, there is no sign for hy-drocarbon accumulation in the sandstone. In terms of this phenomenon, the principle of reservoir-forming controlled by fault terrace is proposed, i.e., when the single fault activates, because of the incompressibility of pore water, the resistance of pore and the direction of buoyancy, it is impossible for hydrocarbon to ac-cumulate in sandstone. But when there are two or more faults, one of the faults acts as the spillway so the hydrocarbon could fill in the pore of sandstone through other faults. In total five gas bearing structures and four failure traps are considered, as examples to demonstrate our findings. According to this theory, it is well-advised that south steep slope zone of Baodao-Changchang Depression, south gentle slope zone of Lingshui Depression, north steep slope zone of Lingshui Depression, and north steep slope zone of Baodao Depression are the most favorable step-fault zones, which are the main exploration direction in next stage.
基金Supported by the China National Science and Technology Major Project(2016ZX05006).
文摘Based on seismic and logging data,taking the downthrow fault nose of Binhai fault in Qikou Sag as the object of study,we analyzed fault characteristics,sand body distribution,fault-sand combinations and hydrocarbon accumulation to reveal the hydrocarbon enrichment law in the fault-rich area of fault depression lake basin.The results show that the Binhai Cenozoic fault nose is characterized by east-west zoning,the main part of the western fault segment is simple in structure,whereas the broom-shaped faults in the eastern segment are complex in structure,including several groups of faults.The difference of fault evolution controls the spatial distribution of sand bodies.The sand bodies are in continuous large pieces in the downthrow fault trough belt along the Gangdong Fault in the middle segment of the fault nose,forming consequent fault-sand combination;whereas the fault activity period of the eastern part of the fault nose was later,and the sand bodies controlled by paleogeomorphology are distributed in multi-phase north-south finger-shaped pattern,forming vertical fault-sand combination pattern matching with the fault.The configuration between faults and sand bodies,and oil sources and caprocks determine the vertical conductivity,plane distribution and vertical distribution of oil and gas.Two oil and gas accumulation modes,i.e.single main fault hydrocarbon supply-fault sand consequent matching-oil accumulation in multi-layers stereoscopically and fault system transportation-fault sand vertical matching-oil accumulation in banded overlapping layers occur in the middle and eastern segments of the fault nose respectively,and they control the difference of oil and gas distribution and enrichment degree in the Binhai fault nose.
基金Supported by the China Science and Technology Major Project(2017ZX05008-004-001,2017ZX05001-001)Chinese Academy of Sciences Strategic Pilot Project(XDA14010302)
文摘Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon accumulation in the Tazhong uplift, Tarim Basin are investigated. The results show that the oil and gas in the Tazhong uplift has the characteristics of complex accumulation mainly controlled by faults, and more than 80% of the oil and gas reserves are enriched along fault zones. There are large thrust and strike-slip faults in the Tazhong uplift, and the coupling relationship between the formation and evolution of the faults and accumulation determine the difference in complex oil and gas accumulations. The active scale and stage of faults determine the fullness of the traps and the balance of the phase, that is, the blocking of the transport system, the insufficient filling of oil and gas, and the unsteady state of fluid accumulation are dependent on the faults. The multi-period tectonic sedimentary evolution controls the differences of trap conditions in the fault zones, and the multi-phase hydrocarbon migration and accumulation causes the differences of fluid distribution in the fault zones. The theory of differential oil and gas accumulation controlled by fault is the key to the overall evaluation, three-dimensional development and discovery of new reserves in the Tazhong uplift.
基金China University of Geosciences(Beijing)and the National Key R&D Program Key technologies and application of 3D modeling of active faults for three different structural types(Grant No.2018YFC1504100)for providing the 3D fault data of the normal fault system in the Yinchuan Basinsupported by the Special Fund of the Institute of Geophysics,China Earthquake Administration(Grant No.DQJB19A35)+1 种基金the National Natural Science Foundation of China(Grant No.41974058)the National Key R&D Program(Grant No.2018YFC1504103)。
文摘A series of parallel normal faults are distributed in the Helan Mountain-Yinchuan Basin tectonic belt,where a historical M8.0 earthquake occurred.It is rare that such a great earthquake occurs in a normal fault system within the continent.To deeply understand the fine structure of the normal fault system,we deployed 104 broadband temporary stations near the system,collected data from permanent stations and other temporary stations nearby,and obtained the high-precision threedimensional S-wave velocity structure beneath 206 stations via joint inversion of receiver function and surface wave.A typical graben-in-graben feature bounded by four major faults was identified in the Yinchuan Basin.We analyzed the seismicity in the normal fault system and found a seismic strip in the southern part of the basin,where there are significant changes in the sedimentary thickness,which is speculated to be the southern boundary of the normal fault system.There are significant differences in the crustal thickness and velocity structure in the crust on both sides of the boundary between the Helan Mountain and the Yinchuan Basin,and a low-velocity zone was identified in the upper mantle beneath this boundary,which could be related to the fact that the Helan Mountain-Yinchuan Basin tectonic belt is located between the Alxa Block and the Ordos Block.The M8.0 Yinchuan-Pingluo earthquake occurred at the junction of four major faults in the Yinchuan Basin,which was located in the high-velocity zone near the velocity transition zone at the basin-mountain boundary.The low-velocity zone in the upper mantle beneath this boundary may have promoted the nucleation of this earthquake.Based on evidence from geological drilling,micro seismicity,the regional stress field,and the velocity models obtained in this study,it is inferred that the eastern piedmont fault zone of the Helan Mountain was the seismogenic fault of the 1739 M8.0 Yinchuan-Pingluo earthquake.
文摘Asymmetry of the Weihe Basin is discussed in the paper,and also the master control fault,secondary control fault of asymmetric basin is proposed in the paper.The asymmetry of the Weihe Basin is expressed as follows:(1) its shape of the cross sections is asymmetrical;(2) the tectonic activity of the southern margin fault and the northern margin one is apparently different;(3) its deep tectonics is asymmetrical.Finally,we use the Weihe Basin as an example to establish a "cantilever-beam" model for calculations.The results show that:(1) flexure leads to stress accumulation and forming extensional fractures;(2) fractures slope steeply towards the free end;(3) when the length of beam becomes longer,it is possible that new extensional fractures will occur in the fixed end.