Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution...Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution, however. The difference in burial depth of the reservoirs between east and west sides is up to 1000 m. Water-bearing formations exist between oil- and gas-bearing formations vertically and water-producing wells are drilled between oil- and gas-producing wells. Macroscopically, oil and gas occur at low positions, while water occurs at high positiona on the northern slope of Tazhong uplift. The mechanism of differential hydrocarbon enrichment in heterogeneous reservoirs is by far not clarified, which has affected the efficient exploration and development of oil and gas fields in this area.展开更多
The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depr...The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.展开更多
Based on seismic and logging data,taking the downthrow fault nose of Binhai fault in Qikou Sag as the object of study,we analyzed fault characteristics,sand body distribution,fault-sand combinations and hydrocarbon ac...Based on seismic and logging data,taking the downthrow fault nose of Binhai fault in Qikou Sag as the object of study,we analyzed fault characteristics,sand body distribution,fault-sand combinations and hydrocarbon accumulation to reveal the hydrocarbon enrichment law in the fault-rich area of fault depression lake basin.The results show that the Binhai Cenozoic fault nose is characterized by east-west zoning,the main part of the western fault segment is simple in structure,whereas the broom-shaped faults in the eastern segment are complex in structure,including several groups of faults.The difference of fault evolution controls the spatial distribution of sand bodies.The sand bodies are in continuous large pieces in the downthrow fault trough belt along the Gangdong Fault in the middle segment of the fault nose,forming consequent fault-sand combination;whereas the fault activity period of the eastern part of the fault nose was later,and the sand bodies controlled by paleogeomorphology are distributed in multi-phase north-south finger-shaped pattern,forming vertical fault-sand combination pattern matching with the fault.The configuration between faults and sand bodies,and oil sources and caprocks determine the vertical conductivity,plane distribution and vertical distribution of oil and gas.Two oil and gas accumulation modes,i.e.single main fault hydrocarbon supply-fault sand consequent matching-oil accumulation in multi-layers stereoscopically and fault system transportation-fault sand vertical matching-oil accumulation in banded overlapping layers occur in the middle and eastern segments of the fault nose respectively,and they control the difference of oil and gas distribution and enrichment degree in the Binhai fault nose.展开更多
Manghan Faulted Sag is an exploratory target area in Kailu Basin. In order to determine its exploration prospect, the effectiveness of its source rocks is evaluated by organic geochemical behavior analysis of the samp...Manghan Faulted Sag is an exploratory target area in Kailu Basin. In order to determine its exploration prospect, the effectiveness of its source rocks is evaluated by organic geochemical behavior analysis of the samples, and their distributions are predicted using trace integration seismic inversion technology. Studies on their organic matter abundance, type and maturity indicate that the source rocks in the Sag have great generating potentials. Furthermore, it is found that, based on the spatial distribution predication, the source rocks in the Sag are well developed. Therefore, the Sag has a promising prospect for exploration.展开更多
Based on outcrop,seismic and drilling data,the main regional unconformities in the Sichuan Basin and their controls on hydrocarbon accumulation were systematically studied.Three findings are obtained.First,six regiona...Based on outcrop,seismic and drilling data,the main regional unconformities in the Sichuan Basin and their controls on hydrocarbon accumulation were systematically studied.Three findings are obtained.First,six regional stratigraphic unconformities are mainly developed in the Sichuan Basin,from the bottom up which are between pre-Sinian and Sinian,between Sinian and Cambrian,between pre-Permian and Permian,between middle and upper Permian,between middle and upper Triassic,and between Triassic and Jurassic.Especially,16 of 21l conventional(and tight)gas fields discovered are believed to have formed in relation to regional unconformities.Second,regional unconformity mainly controls hydrocarbon accumulation from five aspects:(1)The porosity and permeability of reservoirs under the unconformity are improved through weathering crust karstification to form large-scale karst reservoirs;(2)Good source-reservoir-caprock assemblage can form near the unconformity,which provides a basis for forming large gas field;(3)Regional unconformity may lead to stratigraphic pinch-out and rugged ancient landform,giving rise to a large area of stratigraphic and lithologic trap groups;(4)Regional unconformity provides a dominant channel for lateral migration of oil and gas;and(5)Regional unconformity is conducive to large-scale accumulation of oil and gas.Third,the areas related to regional unconformities are the exploration focus of large gas fields in the Sichuan Basin.The pre-Sinian is found with source rocks,reservoir rocks and other favorable conditions for the formation of large gas fields,and presents a large exploration potential.Thus,it is expected to be an important strategic replacement.展开更多
Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the kn...Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the known conventional accumulations, and the characteristics of shale oil source kitchens as well, this paper discusses the differences of source kitchens for the formation of both conventional and shale oils. The formation of conventional oil pools is a process of hydrocarbons enriching from disperse state under the action of buoyancy, which enables most of the oil pools to be formed outside the source kitchens. The source rock does not necessarily have high abundance of organic matter, but has to have high efficiency and enough amount of hydrocarbon expulsion. The TOC threshold of source rocks for conventional oil accumulations is 0.5%, with the best TOC window ranging from 1% to 3%. The oil pools formed inside the source kitchens, mainly shale oil, are the retention of oil and gas in the source rock and there is no large-scale hydrocarbon migration and enrichment process happened, which requires better quality and bigger scale of source rocks. The threshold of TOC for medium to high maturity of shale oil is 2%, with the best range falling in 3%–5%. Medium to low mature shale oil resource has a TOC threshold of 6%, and the higher the better in particular. The most favorable kerogen for both high and low-mature shale oils is oil-prone type of I–II1. Carrying out source rock quality and classification evaluation and looking for large-scale and high-quality source rock enrichment areas are a scientific issue that must be paid attention to when exploration activity changes from out-of-source regions to in-source kitchen areas. The purpose is to provide theoretical guidance for the upcoming shale oil enrichment area selection, economic discovery and objective evaluation of resource potential.展开更多
3D seismic and petrophysical log data interpretation of reservoir sands in “SIMA” Field, onshore Niger Delta has been undertaken in this study to ascertain the reservoir characteristics in terms of favourable struct...3D seismic and petrophysical log data interpretation of reservoir sands in “SIMA” Field, onshore Niger Delta has been undertaken in this study to ascertain the reservoir characteristics in terms of favourable structural and petrophysical parameters suitable for hydrocarbon accumulation and entrapment in the field. Horizon and fault interpretation were carried out for subsurface structural delineation. In all, seven faults (five normal and two listric faults) were mapped in the seismic section. These faults were major structure building faults corresponding to the growth and antithetic faults in the area within the well control. The antithetic fault trending northwest-southeast and the normal fault trending northeast-southwest on the structural high in the section act as good trapping mechanisms for hydrocarbon accumulations in the reservoir. From the manual and auto-tracking methods applied, several horizons were identified and mapped. The section is characterized by high amplitude with moderate-to-good continuity reflections appearing parallel to sub-parallel, mostly disturbed by some truncations which are more fault related than lithologic heterogeneity. The southwestern part is, however, characterized by low-to-high or variable amplitude reflections with poor-to-low continuity. Normal faults linked to roll-over anticlines were identified. Some fault truncations were observed due to lithologic heterogeneity. The combination of these faults acts as good traps for hydrocarbon accumulations in the reservoir. Reservoir favourable petrophysical qualities, having average NTG, porosity, permeability and water saturation of 5 m, 0.20423, 1128.219 kD and 0.458 respectively.展开更多
In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main contr...In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main controlling factors and accumulation model of Chang 9 reservoir in this area can provide a basis for the production targets, and assist in formulating reasonable development technology policy. In this paper, to explore and summarize the hydrocarbon accumulation model, the Chang 9 reservoir were analyzed from the aspects of oil source, fracture, oil migration, structure, lithology and reservoir physical properties for the main controlling factors in this area. Organic geochemical and geological comprehensive analysis that the oil-source of the Chang 9 reservoir in the northwest of Ordos Basin is derived from Chang 7 hydrocarbon source rocks. The fractures provide a sound channel for the "vertical multi-point filling" of the oil source from Chang 7 to Chang 9. The crude oil migrates vertically from Chang 7 to Chang 9, then expands horizontally to form a reservoir. Structures play an important role in controlling the distribution of reservoirs, the control by sand in small layer and physical property is also obvious. This paper creatively establishes the reservoir accumulation model of Chang 9 in northwest of Ordos Basin, which is characterized by Vertical multi-point filling, horizontal expansion becomes oil pool. It reveals the genetic mechanism of the development of Chang 9 multi-reservoir in the study area, which provides guidance for exploration and evaluation deployment.展开更多
The Ediacaran–Ordovician strata within three major marine basins(Tarim,Sichuan,and Ordos)in China are analyzed.Based on previous studies focusing on the characteristics of the Neoproterozoic–Cambrian strata within t...The Ediacaran–Ordovician strata within three major marine basins(Tarim,Sichuan,and Ordos)in China are analyzed.Based on previous studies focusing on the characteristics of the Neoproterozoic–Cambrian strata within the three major basins(East Siberian,Oman,and Officer in Australia)overseas,the carbonate–evaporite assemblages in the target interval are divided into three types:intercalated carbonate and gypsum salt,interbedded carbonate and gypsum salt,and coexisted carbonate,gypsum salt and clastic rock.Moreover,the concept and definition of the carbonate-evaporite assemblage are clarified.The results indicate that the oil and gas in the carbonate-evaporite assemblage are originated from two types of source rocks:shale and argillaceous carbonate,and confirmed the capability of gypsum salt in the saline environment to drive the source rock hydrocarbon generation.The dolomite reservoirs are classified in two types:gypseous dolomite flat,and grain shoalµbial mound.This study clarifies that the penecontemporaneous or epigenic leaching of atmospheric fresh water mainly controlled the large-scale development of reservoirs.Afterwards,burial dissolution transformed and reworked the reservoirs.The hydrocarbon accumulation in carbonate-evaporite assemblage can be categorized into eight sub-models under three models(sub-evaporite hydrocarbon accumulation,supra-evaporite hydrocarbon accumulation,and inter-evaporite hydrocarbon accumulation).As a result,the Cambrian strata in the Tazhong Uplift North Slope,Maigaiti Slope and Mazatag Front Uplift Zone of the Tarim Basin,the Cambrian strata in the eastern-southern area of the Sichuan Basin,and the inter-evaporite Ma-4 Member of Ordovician in the Ordos Basin,China,are defined as favorable targets for future exploration.展开更多
Based on the theory of structural analysis,the characteristics and structural patterns of subtle faults are studied using 3D seismic data of the Bohai Sea to analyze the development process and origin of the subtle fa...Based on the theory of structural analysis,the characteristics and structural patterns of subtle faults are studied using 3D seismic data of the Bohai Sea to analyze the development process and origin of the subtle faults.A method of identifying subtle faults is proposed,forming a complete system for analyzing origins of subtle faults in the Bohai Sea.The complex strike-slip fault patterns under the strike-slip and extension stress background,diverse formation rocks,and strong neotectonic movement are the reasons for the development of subtle faults.According to the tectonic origin and development location,the subtle faults in Bohai Sea can be divided into 12 types in the three categories of strike slip dominant,extension dominant and strike slip and extension composite,and the different types of subtle faults occur in different regions of the Bohai Sea.Unreasonable variation of sedimentary stratum thickness,inherited distortion or even abrupt change of stratum occurrence,zonation of plane fault combination and the variation of oil-water system in the same structure with no-lithologic change are the important signs for identifying subtle faults in Bohai Sea.The subtle faults greatly enlarge the size of the structural trap groups,and areas with dense subtle faults are often active area of hydrocarbon migration and accumulation and favorable exploration zones,which have strong control on the hydrocarbon accumulation.The identification method for subtle faults has guided the exploration in the mature areas of Bohai Sea effectively,with a number of large and medium oil and gas fields discovered,such as Bozhong 29-6 and Penglai 20-2.展开更多
The ancient structure characteristic,correlation of the oil and the hydrocarbon source rock characteristics,hydrocarbon migration trace,types and conditions of traps,migration passages and characteristic of hydrocarbo...The ancient structure characteristic,correlation of the oil and the hydrocarbon source rock characteristics,hydrocarbon migration trace,types and conditions of traps,migration passages and characteristic of hydrocarbon accumulation are researched in this paper.It is shown through the analysis that two main large tectonic activities after the Early Hercynian orogeny resulted in different tectonic patterns in the study area.Two main hydrocarbon infills occurred in the Donghetang Formation,the first occurred in the Early Hercynian resulting in the ancient hydrocarbon accumulation in the northern Tahe,the second infill was a large amount that occurred in places beneficial for hydrocarbon accumulation,such as structural traps and structural-stratigraphic traps formed in the Early Himalayan orogeny after migration along the faults through source rocks and other passages.Before the earlier period of the Himalayan orogeny,the petroleum mainly migrated to the north,whereas petroleum migrated to the south and southeast because of the structural reverse in the Himalayan orogeny,so the middle and later period of the Himalayan orogeny is the key period for hydrocarbon accumulation.The model of"oil generation formed early,hydrocarbon accumulation controlled by the faults through source rocks and structures formed late"is proposed.It is pointed out that the south of the research area is currently the beneficial district for hydrocarbon accumulation, which provides the basis for future petroleum exploration.展开更多
Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the prim...Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the primary control factors of the hydrocarbon accumulation and establish corresponding model in order to predict favorable exploration target zones of hydrocarbon reservoirs. This study demonstrates that the Upper Cretaceous Yogou Formation is a self-generation and self-accumulation type reservoir. The Yogou Formation hydrocarbon reservoirs in the Koulele area are controlled by four factors:(1) the source rock is controlled by a wide range of YS1-YS2 marine shale,(2) the sandstone reservoir is controlled by the YS3 underwater distributary channel and storm dunes,(3) migration of hydrocarbons is controlled by faults and the regional monocline structure, and(4) the accumulation of hydrocarbons is controlled by lateral seal. The structures in the western Koulele area are primarily reverse fault-blocks with large throws, and the structures in the east are dominantly fault-blocks with small throws(co-rotating and reverse) and a fault-nose. In the western Koulele area, where the facies are dominated by storm dunes on a larger scale, it is easier to form lithologic reservoirs of sandstone lens. In the eastern Koulele area, high-quality channel sandstone reservoirs, fault-blocks with small throws, and the monocline structure benefit for the formation of updip pinch out lithologic traps, fault lithologic reservoirs and fault-nose structural reservoirs. Future exploration targets should be focused in the western storm dunes zone and eastern distributary channel sand zone with small fault-blocks.展开更多
The Carboniferous volcanic reservoirs in Junggar Basin contain rich hydrocarbon resources,implying a great exploration potential,so that they have become a key replacement target for“three-dimensional exploration”.T...The Carboniferous volcanic reservoirs in Junggar Basin contain rich hydrocarbon resources,implying a great exploration potential,so that they have become a key replacement target for“three-dimensional exploration”.The study on the Carboniferous volcanic reservoirs and their hydrocarbon accumulation elements is significant for clarifying the orientation for exploration.In this paper,based on 37 reserves reports and 3200 reservoir test data,the Carboniferous volcanic reservoirs in Junggar Basin were discussed from the prospective of lithology and lithofacies,physical properties,reservoir types,main controls on hydrocarbon accumulation,and hydrocarbon accumulation patterns.It is found that the Carboniferous in the basin is mostly in the multi-island ocean-volcanic island arc structural-sedimentary environment,so it is geologically eligible for forming in-situ volcanic reservoirs.The volcanic rocks are:(1)mostly distributed along deep and large faults,with the lithology and lithofacies controlled by volcanic architectures;(2)dominantly lava,followed by volcaniclastic lava and volcaniclastic rock;(3)distributed in the periphery of hydrocarbon-generating sag and within the source rocks horizontally,and concentrated in the weathering crust at the top longitudinally,possibly leading to reworked weathering crust reservoir;and(4)liable to form inner reservoirs.The volcanic reservoirs can be concluded into four hydrocarbon accumulation patterns,i.e.,self-generating&self-storing in paleo-uplift and vertical migration,self-generating&self-storing in paleo-uplift and lateral migration,young-generating&old-storing in fault zone and vertical migration,and young-generating&old-storing in paleo-uplift and lateral migration.Future exploration will focus on the effective source rock development and hydrocarbon supply zones and the selfgenerating&self-storing and young-generating&old-storing patterns.The exploration prospects are determined to be the Ludong-Wucaiwan-Baijiahai slope belt and the southern slope belt of the Shaqi uplift(self-generating&self-storing pattern)in eastern Junggar,and the fault and nasal arch zone at the northwestern margin and the nasal arch zone(deep and large structure)in the Luxi area(younggenerating&old-storing pattern)in western Junggar.展开更多
There had been a long history of the buried-hill hydrocarbon reservoirs exploration operation in Bohai Sea.Between 1970s and 1990s,based on the onshore exploration experiences in eastern China,many boreholes were dril...There had been a long history of the buried-hill hydrocarbon reservoirs exploration operation in Bohai Sea.Between 1970s and 1990s,based on the onshore exploration experiences in eastern China,many boreholes were drilled in order to detect large-scale carbonate buried-hill hydrocarbon reservoirs in Bohai Sea,but no prominent discoveries was achieved.In-depth re-evaluation and examination were conducted upon these exploration failures,a new understanding that Bohai Sea had unique geological characteristics of buried hills was concluded.Bedrocks on the uplifts of Bohai oil province were mainly granites and migmatitic granites of Archean,Proterozoic and Mesozoic,as well as minor Lower Paleozoic carbonates.Proterozoic algae dolomite was most favorable for buried-hill hydrocarbon reservoirs however which were not developed in Bohai Sea.A large number of faults in Bohai oil province were developed and faults activities were intense in the late period.Thus,conventionally,reservoirs and preservation conditions of the buried hills were believed to be poor in Bohai Sea,and were not favourable for formation of large-scale buried-hill hydrocarbon reservoirs.Through the long-term practices and deep analyses,the coupling between granites,migmatitic granites and intense bedrock faults was favorable for buried-hill reservoirs with high test production and relatively low core recovery rate.Geophysical data could be used for accurate predictions of bedrock lithology and faults.The monadnock buried hills on the low uplifts adjacent to hydrocarbon-rich sags were covered by shallow to semi-deep lacustrine shale,which was favorable for buried-hill hydrocarbon reservoirs.Under the guidance of a series of innovative understandings,the re-exploration of buried hills in Bohai Sea achieved two largest granite buried-hill oil and gas fields with 100 million tons of reserves.The understanding and practice processes might also inspire exploration of other areas.展开更多
基金financially supported by the National Science Foundation of China(grant No.41372146)
文摘Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution, however. The difference in burial depth of the reservoirs between east and west sides is up to 1000 m. Water-bearing formations exist between oil- and gas-bearing formations vertically and water-producing wells are drilled between oil- and gas-producing wells. Macroscopically, oil and gas occur at low positions, while water occurs at high positiona on the northern slope of Tazhong uplift. The mechanism of differential hydrocarbon enrichment in heterogeneous reservoirs is by far not clarified, which has affected the efficient exploration and development of oil and gas fields in this area.
基金Supported by the National Natural Science Foundation of China(41602129,41602164)China National Science and Technology Major Project(2016ZX05007003,2016ZX05006-005)
文摘The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.
基金Supported by the China National Science and Technology Major Project(2016ZX05006).
文摘Based on seismic and logging data,taking the downthrow fault nose of Binhai fault in Qikou Sag as the object of study,we analyzed fault characteristics,sand body distribution,fault-sand combinations and hydrocarbon accumulation to reveal the hydrocarbon enrichment law in the fault-rich area of fault depression lake basin.The results show that the Binhai Cenozoic fault nose is characterized by east-west zoning,the main part of the western fault segment is simple in structure,whereas the broom-shaped faults in the eastern segment are complex in structure,including several groups of faults.The difference of fault evolution controls the spatial distribution of sand bodies.The sand bodies are in continuous large pieces in the downthrow fault trough belt along the Gangdong Fault in the middle segment of the fault nose,forming consequent fault-sand combination;whereas the fault activity period of the eastern part of the fault nose was later,and the sand bodies controlled by paleogeomorphology are distributed in multi-phase north-south finger-shaped pattern,forming vertical fault-sand combination pattern matching with the fault.The configuration between faults and sand bodies,and oil sources and caprocks determine the vertical conductivity,plane distribution and vertical distribution of oil and gas.Two oil and gas accumulation modes,i.e.single main fault hydrocarbon supply-fault sand consequent matching-oil accumulation in multi-layers stereoscopically and fault system transportation-fault sand vertical matching-oil accumulation in banded overlapping layers occur in the middle and eastern segments of the fault nose respectively,and they control the difference of oil and gas distribution and enrichment degree in the Binhai fault nose.
基金Project (No. 40238059) supported by the National Natural Science Foundation of China
文摘Manghan Faulted Sag is an exploratory target area in Kailu Basin. In order to determine its exploration prospect, the effectiveness of its source rocks is evaluated by organic geochemical behavior analysis of the samples, and their distributions are predicted using trace integration seismic inversion technology. Studies on their organic matter abundance, type and maturity indicate that the source rocks in the Sag have great generating potentials. Furthermore, it is found that, based on the spatial distribution predication, the source rocks in the Sag are well developed. Therefore, the Sag has a promising prospect for exploration.
基金Supported by the National Natural Science Foundation Project of China(U22B6002)Prospective Basic Technology Research Project of PetroChina(2021DJ0605).
文摘Based on outcrop,seismic and drilling data,the main regional unconformities in the Sichuan Basin and their controls on hydrocarbon accumulation were systematically studied.Three findings are obtained.First,six regional stratigraphic unconformities are mainly developed in the Sichuan Basin,from the bottom up which are between pre-Sinian and Sinian,between Sinian and Cambrian,between pre-Permian and Permian,between middle and upper Permian,between middle and upper Triassic,and between Triassic and Jurassic.Especially,16 of 21l conventional(and tight)gas fields discovered are believed to have formed in relation to regional unconformities.Second,regional unconformity mainly controls hydrocarbon accumulation from five aspects:(1)The porosity and permeability of reservoirs under the unconformity are improved through weathering crust karstification to form large-scale karst reservoirs;(2)Good source-reservoir-caprock assemblage can form near the unconformity,which provides a basis for forming large gas field;(3)Regional unconformity may lead to stratigraphic pinch-out and rugged ancient landform,giving rise to a large area of stratigraphic and lithologic trap groups;(4)Regional unconformity provides a dominant channel for lateral migration of oil and gas;and(5)Regional unconformity is conducive to large-scale accumulation of oil and gas.Third,the areas related to regional unconformities are the exploration focus of large gas fields in the Sichuan Basin.The pre-Sinian is found with source rocks,reservoir rocks and other favorable conditions for the formation of large gas fields,and presents a large exploration potential.Thus,it is expected to be an important strategic replacement.
基金Supported by the China National Science and Technology Major Project(2016ZX05046,2017ZX05001)RIPED Scientific Research and Technology Development Project(2018ycq02)。
文摘Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the known conventional accumulations, and the characteristics of shale oil source kitchens as well, this paper discusses the differences of source kitchens for the formation of both conventional and shale oils. The formation of conventional oil pools is a process of hydrocarbons enriching from disperse state under the action of buoyancy, which enables most of the oil pools to be formed outside the source kitchens. The source rock does not necessarily have high abundance of organic matter, but has to have high efficiency and enough amount of hydrocarbon expulsion. The TOC threshold of source rocks for conventional oil accumulations is 0.5%, with the best TOC window ranging from 1% to 3%. The oil pools formed inside the source kitchens, mainly shale oil, are the retention of oil and gas in the source rock and there is no large-scale hydrocarbon migration and enrichment process happened, which requires better quality and bigger scale of source rocks. The threshold of TOC for medium to high maturity of shale oil is 2%, with the best range falling in 3%–5%. Medium to low mature shale oil resource has a TOC threshold of 6%, and the higher the better in particular. The most favorable kerogen for both high and low-mature shale oils is oil-prone type of I–II1. Carrying out source rock quality and classification evaluation and looking for large-scale and high-quality source rock enrichment areas are a scientific issue that must be paid attention to when exploration activity changes from out-of-source regions to in-source kitchen areas. The purpose is to provide theoretical guidance for the upcoming shale oil enrichment area selection, economic discovery and objective evaluation of resource potential.
文摘3D seismic and petrophysical log data interpretation of reservoir sands in “SIMA” Field, onshore Niger Delta has been undertaken in this study to ascertain the reservoir characteristics in terms of favourable structural and petrophysical parameters suitable for hydrocarbon accumulation and entrapment in the field. Horizon and fault interpretation were carried out for subsurface structural delineation. In all, seven faults (five normal and two listric faults) were mapped in the seismic section. These faults were major structure building faults corresponding to the growth and antithetic faults in the area within the well control. The antithetic fault trending northwest-southeast and the normal fault trending northeast-southwest on the structural high in the section act as good trapping mechanisms for hydrocarbon accumulations in the reservoir. From the manual and auto-tracking methods applied, several horizons were identified and mapped. The section is characterized by high amplitude with moderate-to-good continuity reflections appearing parallel to sub-parallel, mostly disturbed by some truncations which are more fault related than lithologic heterogeneity. The southwestern part is, however, characterized by low-to-high or variable amplitude reflections with poor-to-low continuity. Normal faults linked to roll-over anticlines were identified. Some fault truncations were observed due to lithologic heterogeneity. The combination of these faults acts as good traps for hydrocarbon accumulations in the reservoir. Reservoir favourable petrophysical qualities, having average NTG, porosity, permeability and water saturation of 5 m, 0.20423, 1128.219 kD and 0.458 respectively.
文摘In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main controlling factors and accumulation model of Chang 9 reservoir in this area can provide a basis for the production targets, and assist in formulating reasonable development technology policy. In this paper, to explore and summarize the hydrocarbon accumulation model, the Chang 9 reservoir were analyzed from the aspects of oil source, fracture, oil migration, structure, lithology and reservoir physical properties for the main controlling factors in this area. Organic geochemical and geological comprehensive analysis that the oil-source of the Chang 9 reservoir in the northwest of Ordos Basin is derived from Chang 7 hydrocarbon source rocks. The fractures provide a sound channel for the "vertical multi-point filling" of the oil source from Chang 7 to Chang 9. The crude oil migrates vertically from Chang 7 to Chang 9, then expands horizontally to form a reservoir. Structures play an important role in controlling the distribution of reservoirs, the control by sand in small layer and physical property is also obvious. This paper creatively establishes the reservoir accumulation model of Chang 9 in northwest of Ordos Basin, which is characterized by Vertical multi-point filling, horizontal expansion becomes oil pool. It reveals the genetic mechanism of the development of Chang 9 multi-reservoir in the study area, which provides guidance for exploration and evaluation deployment.
基金Supported by the National Natural Science Foundation of China(U22B6002)National Project for Oil and Gas Technology(2016ZX05-004)CNPC Science and Technology Project(2023ZZ02).
文摘The Ediacaran–Ordovician strata within three major marine basins(Tarim,Sichuan,and Ordos)in China are analyzed.Based on previous studies focusing on the characteristics of the Neoproterozoic–Cambrian strata within the three major basins(East Siberian,Oman,and Officer in Australia)overseas,the carbonate–evaporite assemblages in the target interval are divided into three types:intercalated carbonate and gypsum salt,interbedded carbonate and gypsum salt,and coexisted carbonate,gypsum salt and clastic rock.Moreover,the concept and definition of the carbonate-evaporite assemblage are clarified.The results indicate that the oil and gas in the carbonate-evaporite assemblage are originated from two types of source rocks:shale and argillaceous carbonate,and confirmed the capability of gypsum salt in the saline environment to drive the source rock hydrocarbon generation.The dolomite reservoirs are classified in two types:gypseous dolomite flat,and grain shoalµbial mound.This study clarifies that the penecontemporaneous or epigenic leaching of atmospheric fresh water mainly controlled the large-scale development of reservoirs.Afterwards,burial dissolution transformed and reworked the reservoirs.The hydrocarbon accumulation in carbonate-evaporite assemblage can be categorized into eight sub-models under three models(sub-evaporite hydrocarbon accumulation,supra-evaporite hydrocarbon accumulation,and inter-evaporite hydrocarbon accumulation).As a result,the Cambrian strata in the Tazhong Uplift North Slope,Maigaiti Slope and Mazatag Front Uplift Zone of the Tarim Basin,the Cambrian strata in the eastern-southern area of the Sichuan Basin,and the inter-evaporite Ma-4 Member of Ordovician in the Ordos Basin,China,are defined as favorable targets for future exploration.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-003)CNOOC Science and Technology Major Project(CNOOC-KJ135ZDXM36TJ08TJ)。
文摘Based on the theory of structural analysis,the characteristics and structural patterns of subtle faults are studied using 3D seismic data of the Bohai Sea to analyze the development process and origin of the subtle faults.A method of identifying subtle faults is proposed,forming a complete system for analyzing origins of subtle faults in the Bohai Sea.The complex strike-slip fault patterns under the strike-slip and extension stress background,diverse formation rocks,and strong neotectonic movement are the reasons for the development of subtle faults.According to the tectonic origin and development location,the subtle faults in Bohai Sea can be divided into 12 types in the three categories of strike slip dominant,extension dominant and strike slip and extension composite,and the different types of subtle faults occur in different regions of the Bohai Sea.Unreasonable variation of sedimentary stratum thickness,inherited distortion or even abrupt change of stratum occurrence,zonation of plane fault combination and the variation of oil-water system in the same structure with no-lithologic change are the important signs for identifying subtle faults in Bohai Sea.The subtle faults greatly enlarge the size of the structural trap groups,and areas with dense subtle faults are often active area of hydrocarbon migration and accumulation and favorable exploration zones,which have strong control on the hydrocarbon accumulation.The identification method for subtle faults has guided the exploration in the mature areas of Bohai Sea effectively,with a number of large and medium oil and gas fields discovered,such as Bozhong 29-6 and Penglai 20-2.
基金supported by State Key Laboratory of Petroleum Reservoir Geology and Reservoir Engineering and partly by Northwest Bureau of Petroleum of SINOPEC
文摘The ancient structure characteristic,correlation of the oil and the hydrocarbon source rock characteristics,hydrocarbon migration trace,types and conditions of traps,migration passages and characteristic of hydrocarbon accumulation are researched in this paper.It is shown through the analysis that two main large tectonic activities after the Early Hercynian orogeny resulted in different tectonic patterns in the study area.Two main hydrocarbon infills occurred in the Donghetang Formation,the first occurred in the Early Hercynian resulting in the ancient hydrocarbon accumulation in the northern Tahe,the second infill was a large amount that occurred in places beneficial for hydrocarbon accumulation,such as structural traps and structural-stratigraphic traps formed in the Early Himalayan orogeny after migration along the faults through source rocks and other passages.Before the earlier period of the Himalayan orogeny,the petroleum mainly migrated to the north,whereas petroleum migrated to the south and southeast because of the structural reverse in the Himalayan orogeny,so the middle and later period of the Himalayan orogeny is the key period for hydrocarbon accumulation.The model of"oil generation formed early,hydrocarbon accumulation controlled by the faults through source rocks and structures formed late"is proposed.It is pointed out that the south of the research area is currently the beneficial district for hydrocarbon accumulation, which provides the basis for future petroleum exploration.
基金supported by the National Science and Technology Major Project of China (No. 2011ZX05009-002)
文摘Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the primary control factors of the hydrocarbon accumulation and establish corresponding model in order to predict favorable exploration target zones of hydrocarbon reservoirs. This study demonstrates that the Upper Cretaceous Yogou Formation is a self-generation and self-accumulation type reservoir. The Yogou Formation hydrocarbon reservoirs in the Koulele area are controlled by four factors:(1) the source rock is controlled by a wide range of YS1-YS2 marine shale,(2) the sandstone reservoir is controlled by the YS3 underwater distributary channel and storm dunes,(3) migration of hydrocarbons is controlled by faults and the regional monocline structure, and(4) the accumulation of hydrocarbons is controlled by lateral seal. The structures in the western Koulele area are primarily reverse fault-blocks with large throws, and the structures in the east are dominantly fault-blocks with small throws(co-rotating and reverse) and a fault-nose. In the western Koulele area, where the facies are dominated by storm dunes on a larger scale, it is easier to form lithologic reservoirs of sandstone lens. In the eastern Koulele area, high-quality channel sandstone reservoirs, fault-blocks with small throws, and the monocline structure benefit for the formation of updip pinch out lithologic traps, fault lithologic reservoirs and fault-nose structural reservoirs. Future exploration targets should be focused in the western storm dunes zone and eastern distributary channel sand zone with small fault-blocks.
基金supported by the National Science&Technology Major Project“Distribution Law&Resource Evaluation of Deep Oil&Gas in Petroleum-bearing Basins in China”(No.2017ZX05008-006)PetroChina Key Scientific&Technological Project(Nos.2021DJ07,2019E-2601,2019B-0301).
文摘The Carboniferous volcanic reservoirs in Junggar Basin contain rich hydrocarbon resources,implying a great exploration potential,so that they have become a key replacement target for“three-dimensional exploration”.The study on the Carboniferous volcanic reservoirs and their hydrocarbon accumulation elements is significant for clarifying the orientation for exploration.In this paper,based on 37 reserves reports and 3200 reservoir test data,the Carboniferous volcanic reservoirs in Junggar Basin were discussed from the prospective of lithology and lithofacies,physical properties,reservoir types,main controls on hydrocarbon accumulation,and hydrocarbon accumulation patterns.It is found that the Carboniferous in the basin is mostly in the multi-island ocean-volcanic island arc structural-sedimentary environment,so it is geologically eligible for forming in-situ volcanic reservoirs.The volcanic rocks are:(1)mostly distributed along deep and large faults,with the lithology and lithofacies controlled by volcanic architectures;(2)dominantly lava,followed by volcaniclastic lava and volcaniclastic rock;(3)distributed in the periphery of hydrocarbon-generating sag and within the source rocks horizontally,and concentrated in the weathering crust at the top longitudinally,possibly leading to reworked weathering crust reservoir;and(4)liable to form inner reservoirs.The volcanic reservoirs can be concluded into four hydrocarbon accumulation patterns,i.e.,self-generating&self-storing in paleo-uplift and vertical migration,self-generating&self-storing in paleo-uplift and lateral migration,young-generating&old-storing in fault zone and vertical migration,and young-generating&old-storing in paleo-uplift and lateral migration.Future exploration will focus on the effective source rock development and hydrocarbon supply zones and the selfgenerating&self-storing and young-generating&old-storing patterns.The exploration prospects are determined to be the Ludong-Wucaiwan-Baijiahai slope belt and the southern slope belt of the Shaqi uplift(self-generating&self-storing pattern)in eastern Junggar,and the fault and nasal arch zone at the northwestern margin and the nasal arch zone(deep and large structure)in the Luxi area(younggenerating&old-storing pattern)in western Junggar.
基金This work was supported by National Science and Technology Major Project of China(Grant No.2011ZX05023-001).
文摘There had been a long history of the buried-hill hydrocarbon reservoirs exploration operation in Bohai Sea.Between 1970s and 1990s,based on the onshore exploration experiences in eastern China,many boreholes were drilled in order to detect large-scale carbonate buried-hill hydrocarbon reservoirs in Bohai Sea,but no prominent discoveries was achieved.In-depth re-evaluation and examination were conducted upon these exploration failures,a new understanding that Bohai Sea had unique geological characteristics of buried hills was concluded.Bedrocks on the uplifts of Bohai oil province were mainly granites and migmatitic granites of Archean,Proterozoic and Mesozoic,as well as minor Lower Paleozoic carbonates.Proterozoic algae dolomite was most favorable for buried-hill hydrocarbon reservoirs however which were not developed in Bohai Sea.A large number of faults in Bohai oil province were developed and faults activities were intense in the late period.Thus,conventionally,reservoirs and preservation conditions of the buried hills were believed to be poor in Bohai Sea,and were not favourable for formation of large-scale buried-hill hydrocarbon reservoirs.Through the long-term practices and deep analyses,the coupling between granites,migmatitic granites and intense bedrock faults was favorable for buried-hill reservoirs with high test production and relatively low core recovery rate.Geophysical data could be used for accurate predictions of bedrock lithology and faults.The monadnock buried hills on the low uplifts adjacent to hydrocarbon-rich sags were covered by shallow to semi-deep lacustrine shale,which was favorable for buried-hill hydrocarbon reservoirs.Under the guidance of a series of innovative understandings,the re-exploration of buried hills in Bohai Sea achieved two largest granite buried-hill oil and gas fields with 100 million tons of reserves.The understanding and practice processes might also inspire exploration of other areas.