Based on the analysis of inherent limitations in existing security response decision-making systems, a dynamic adaptive model of fault response is presented. Several security fault levels were founded, which comprise ...Based on the analysis of inherent limitations in existing security response decision-making systems, a dynamic adaptive model of fault response is presented. Several security fault levels were founded, which comprise the basic level, equipment level and mechanism level. Fault damage cost is calculated using the analytic hierarchy process. Meanwhile, the model evaluates the impact of different responses upon fault repair and normal operation. Response operation cost and response negative cost are introduced through quantitative calculation. This model adopts a comprehensive response decision of security fault in three principles--the maximum and minimum principle, timeliness principle, acquiescence principle, which assure optimal response counter- measure is selected for different situations. Experimental results show that the proposed model has good self- adaptation ability, timeliness and cost-sensitiveness.展开更多
Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the...Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the execution cost, the sequential diagnosis strategy obtained by previous methods is actually not optimal from the view of life cycle. In this paper, the test sequencing problem based on life cycle cost is presented. It is formulated as an optimization problem, which is non-deterministic polynomial-time hard (NP-hard). An algorithm and a strategy to improve its computational efficiency are proposed. The formulation and algorithms are tested on various simulated systems and comparisons are made with the extant test sequencing methods. Application on a pump rotational speed control (PRSC) system of a spacecraft is studied in detail. Both the simulation results and the real-world case application results suggest that the solution proposed in this paper can significantly reduce the life cycle cost of a sequential fault diagnosis strategy.展开更多
基金Sponsored by the Ministerial Level Foundation(20021823)
文摘Based on the analysis of inherent limitations in existing security response decision-making systems, a dynamic adaptive model of fault response is presented. Several security fault levels were founded, which comprise the basic level, equipment level and mechanism level. Fault damage cost is calculated using the analytic hierarchy process. Meanwhile, the model evaluates the impact of different responses upon fault repair and normal operation. Response operation cost and response negative cost are introduced through quantitative calculation. This model adopts a comprehensive response decision of security fault in three principles--the maximum and minimum principle, timeliness principle, acquiescence principle, which assure optimal response counter- measure is selected for different situations. Experimental results show that the proposed model has good self- adaptation ability, timeliness and cost-sensitiveness.
基金supported by China Civil Space Foundation(No.C1320063131)
文摘Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the execution cost, the sequential diagnosis strategy obtained by previous methods is actually not optimal from the view of life cycle. In this paper, the test sequencing problem based on life cycle cost is presented. It is formulated as an optimization problem, which is non-deterministic polynomial-time hard (NP-hard). An algorithm and a strategy to improve its computational efficiency are proposed. The formulation and algorithms are tested on various simulated systems and comparisons are made with the extant test sequencing methods. Application on a pump rotational speed control (PRSC) system of a spacecraft is studied in detail. Both the simulation results and the real-world case application results suggest that the solution proposed in this paper can significantly reduce the life cycle cost of a sequential fault diagnosis strategy.