A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model u...A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).展开更多
In this paper, we suggest a novel parsimonious neurofuzzy model realized by RBFNs for railway carriage system identification and fault diagnosis. To overcome the curse of dimensionality resulting from high dimensional...In this paper, we suggest a novel parsimonious neurofuzzy model realized by RBFNs for railway carriage system identification and fault diagnosis. To overcome the curse of dimensionality resulting from high dimensional input variables, in our developed model the features extracted from the available observations are regarded as the input variables by adopting the higher-order statistics(HOS) technique. Such a constructed model is also applied to a practical railway carriage system, simulation results indicate that the developed neurofuzzy model possesses strong identification and fault diagnosis ability.展开更多
The soft fault induced by parameter variation is one of the most challenging problems in the domain of fault diagnosis for analog circuits.A new fault location and parameter prediction approach for soft-faults diagnos...The soft fault induced by parameter variation is one of the most challenging problems in the domain of fault diagnosis for analog circuits.A new fault location and parameter prediction approach for soft-faults diagnosis in analog circuits is presented in this paper.The proposed method extracts the original signals from the output terminals of the circuits under test(CUT) by a data acquisition board.Firstly,the phase deviation value between fault-free and faulty conditions is obtained by fitting the sampling sequence with a sine curve.Secondly,the sampling sequence is organized into a square matrix and the spectral radius of this matrix is obtained.Thirdly,the smallest error of the spectral radius and the corresponding component value are obtained through comparing the spectral radius and phase deviation value with the trend curves of them,respectively,which are calculated from the simulation data.Finally,the fault location is completed by using the smallest error,and the corresponding component value is the parameter identification result.Both simulated and experimental results show the effectiveness of the proposed approach.It is particularly suitable for the fault location and parameter identification for analog integrated circuits.展开更多
This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an e...This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an efficient parameter tuning procedure(based on minimization of radius/margin bound for SVM's leave-one-out errors)into a multi-class classification strategy using a fuzzy decision factor,which is named fuzzy support vector machine(FSVM).The datasets generated from the Tennessee Eastman process(TEP)simulator were used to evaluate the clas-sification performance.To decrease the negative influence of the auto-correlated and irrelevant variables,a key vari-able identification procedure using recursive feature elimination,based on the SVM is implemented,with time lags incorporated,before every classifier is trained,and the number of relatively important variables to every classifier is basically determined by 10-fold cross-validation.Performance comparisons are implemented among several kinds of multi-class decision machines,by which the effectiveness of the proposed approach is proved.展开更多
In this paper, the regular characteristic of -wear particles related to fault type of machines based on condition monitoring of reciprocal machinery is discussed. The typical -wear particles spectrum is established ac...In this paper, the regular characteristic of -wear particles related to fault type of machines based on condition monitoring of reciprocal machinery is discussed. The typical -wear particles spectrum is established according to the equipment structure , friction and wear rule and the characteristic of 'wear particles; The identification technology of wear particles is proposed based on neural networks and a gray relationship ; an intelligent wear particles identification system is designed. The diagnosis example shows that this system can promote the accuracy and the speed of wear particles identification.展开更多
A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults...A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults were estimated using an extended states observer(ESO).Firstly,the mathematical model of HVDC system was constructed,where the system states and disturbance were treated as an extended state.An augment HVDC system was established by using the extended state in rectify side and converter side,respectively.Then,a fault diagnosis filter was established to diagnose the HVDC system faults via the ESO theory.The evolution of the extended state in the augment HVDC system can reflect the actual system faults and disturbances,which can be used for the fault diagnosis purpose.A novel feature of this approach is that it can simultaneously detect and identify the shape and magnitude of the HVDC faults and disturbance.Finally,different kinds of HVDC faults were simulated to illustrate the feasibility and effectiveness of the proposed ESO based FDI approach.Compared with the neural network based or support vector machine based FDI approach,the ESO based FDI scheme can reduce the fault detection time dramatically and track the actual system fault accurately.What's more important,it needs not do complex online calculations and the training of neural network so that it can be applied into practice.展开更多
The transient impulse features caused by rolling bearing faults are often present in the resonance frequency band which is closely related to the dynamic characteristics of the machine structure.Informative frequency ...The transient impulse features caused by rolling bearing faults are often present in the resonance frequency band which is closely related to the dynamic characteristics of the machine structure.Informative frequency band identification is a crucial prerequisite for envelope analysis and thereby accurate fault diagnosis of rolling bearings.In this paper,based on the ratio of quasi-arithmetic means and Gini index,improved Gini indices(IGIs)are proposed to quantify the transient impulse features of a signal,and their effectiveness and advantages in sparse quantification are confirmed by simulation analysis and comparisons with traditional sparsity measures.Furthermore,an IGI-based envelope analysis method named IGIgram is developed for fault diagnosis of rolling bearings.In the new method,an IGI-based indicator is constructed to evaluate the impulsiveness and cyclostationarity of the narrow-band filtered signal simultaneously,and then a frequency band with abundant fault information is adaptively determined for extracting bearing fault features.The performance of the IGIgram method is verified on the simulation signal and railway bearing experimental signals and compared with typical sparsity measures-based envelope analysis methods and log-cycligram.The results demonstrate that the proposed IGIs are efficient in quantifying bearing fault-induced transient features and the IGIgram method with appropriate power exponent can effectively achieve the diagnostics of different axle-box bearing faults.展开更多
In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, th...In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, the collected vibration signal of the wind turbine bearing is processed by the SSI method to extract fault feature vectors. Then, the MSVM is constructed based on Gauss kernel support vector machine(SVM) and polynomial kernel SVM. Finally, fault feature vectors which indicate the condition of the wind turbine bearing are inputted to the MSVM for fault pattern recognition. The results indicate that the SSI-MSVM method is effective in fault diagnosis for a wind turbine bearing and can successfully identify fault types of bearing and achieve higher diagnostic accuracy than that of K-means clustering, fuzzy means clustering and traditional SVM.展开更多
针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨...针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨识方法。首先将采集得到的GIS振动信号转化为图信号,并利用图傅里叶变换技术变换至图谱域进行分析处理;然后提取图谱功率谱熵作为表征GIS不同状态的特征参数;最后利用MMD距离判别函数实现GIS不同工况下的状态辨识。实验结果表明:在噪声干扰的情况下,所提方法能够有效提取GIS不同状态下的特征参数,并成功区分出屏蔽罩松动及内部异物缺陷,状态辨识精度高达93.89%,较常规方法有明显提高。展开更多
基金supported by the National Natural Science Foundation of China(616732546157310061573101)
文摘A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).
文摘In this paper, we suggest a novel parsimonious neurofuzzy model realized by RBFNs for railway carriage system identification and fault diagnosis. To overcome the curse of dimensionality resulting from high dimensional input variables, in our developed model the features extracted from the available observations are regarded as the input variables by adopting the higher-order statistics(HOS) technique. Such a constructed model is also applied to a practical railway carriage system, simulation results indicate that the developed neurofuzzy model possesses strong identification and fault diagnosis ability.
基金supported by the National Natural Science Foundation of China under Grant No.61371049
文摘The soft fault induced by parameter variation is one of the most challenging problems in the domain of fault diagnosis for analog circuits.A new fault location and parameter prediction approach for soft-faults diagnosis in analog circuits is presented in this paper.The proposed method extracts the original signals from the output terminals of the circuits under test(CUT) by a data acquisition board.Firstly,the phase deviation value between fault-free and faulty conditions is obtained by fitting the sampling sequence with a sine curve.Secondly,the sampling sequence is organized into a square matrix and the spectral radius of this matrix is obtained.Thirdly,the smallest error of the spectral radius and the corresponding component value are obtained through comparing the spectral radius and phase deviation value with the trend curves of them,respectively,which are calculated from the simulation data.Finally,the fault location is completed by using the smallest error,and the corresponding component value is the parameter identification result.Both simulated and experimental results show the effectiveness of the proposed approach.It is particularly suitable for the fault location and parameter identification for analog integrated circuits.
基金Supported by the Special Funds for Major State Basic Research Program of China (973 Program,No.2002CB312200)the Na-tional Natural Science Foundation of China (No.60574019,No.60474045)+1 种基金the Key Technologies R&D Program of Zhejiang Province (No.2005C21087)the Academician Foundation of Zhejiang Province (No.2005A1001-13).
文摘This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an efficient parameter tuning procedure(based on minimization of radius/margin bound for SVM's leave-one-out errors)into a multi-class classification strategy using a fuzzy decision factor,which is named fuzzy support vector machine(FSVM).The datasets generated from the Tennessee Eastman process(TEP)simulator were used to evaluate the clas-sification performance.To decrease the negative influence of the auto-correlated and irrelevant variables,a key vari-able identification procedure using recursive feature elimination,based on the SVM is implemented,with time lags incorporated,before every classifier is trained,and the number of relatively important variables to every classifier is basically determined by 10-fold cross-validation.Performance comparisons are implemented among several kinds of multi-class decision machines,by which the effectiveness of the proposed approach is proved.
文摘In this paper, the regular characteristic of -wear particles related to fault type of machines based on condition monitoring of reciprocal machinery is discussed. The typical -wear particles spectrum is established according to the equipment structure , friction and wear rule and the characteristic of 'wear particles; The identification technology of wear particles is proposed based on neural networks and a gray relationship ; an intelligent wear particles identification system is designed. The diagnosis example shows that this system can promote the accuracy and the speed of wear particles identification.
基金Project Supported by National Natural Science Foundation of China(60574081).
文摘A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults were estimated using an extended states observer(ESO).Firstly,the mathematical model of HVDC system was constructed,where the system states and disturbance were treated as an extended state.An augment HVDC system was established by using the extended state in rectify side and converter side,respectively.Then,a fault diagnosis filter was established to diagnose the HVDC system faults via the ESO theory.The evolution of the extended state in the augment HVDC system can reflect the actual system faults and disturbances,which can be used for the fault diagnosis purpose.A novel feature of this approach is that it can simultaneously detect and identify the shape and magnitude of the HVDC faults and disturbance.Finally,different kinds of HVDC faults were simulated to illustrate the feasibility and effectiveness of the proposed ESO based FDI approach.Compared with the neural network based or support vector machine based FDI approach,the ESO based FDI scheme can reduce the fault detection time dramatically and track the actual system fault accurately.What's more important,it needs not do complex online calculations and the training of neural network so that it can be applied into practice.
基金supported by the National Key Research and Development Program of China (Grant No.2019YFB1405401)the National Natural Science Foundation of China (Grant No.P110520G02004)the China Scholarship Council (Grant No.202107000033),which are highly appreciated by the authors。
文摘The transient impulse features caused by rolling bearing faults are often present in the resonance frequency band which is closely related to the dynamic characteristics of the machine structure.Informative frequency band identification is a crucial prerequisite for envelope analysis and thereby accurate fault diagnosis of rolling bearings.In this paper,based on the ratio of quasi-arithmetic means and Gini index,improved Gini indices(IGIs)are proposed to quantify the transient impulse features of a signal,and their effectiveness and advantages in sparse quantification are confirmed by simulation analysis and comparisons with traditional sparsity measures.Furthermore,an IGI-based envelope analysis method named IGIgram is developed for fault diagnosis of rolling bearings.In the new method,an IGI-based indicator is constructed to evaluate the impulsiveness and cyclostationarity of the narrow-band filtered signal simultaneously,and then a frequency band with abundant fault information is adaptively determined for extracting bearing fault features.The performance of the IGIgram method is verified on the simulation signal and railway bearing experimental signals and compared with typical sparsity measures-based envelope analysis methods and log-cycligram.The results demonstrate that the proposed IGIs are efficient in quantifying bearing fault-induced transient features and the IGIgram method with appropriate power exponent can effectively achieve the diagnostics of different axle-box bearing faults.
基金supported by National Key Technology Research and Development Program (No. 2015BAA06B03)
文摘In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, the collected vibration signal of the wind turbine bearing is processed by the SSI method to extract fault feature vectors. Then, the MSVM is constructed based on Gauss kernel support vector machine(SVM) and polynomial kernel SVM. Finally, fault feature vectors which indicate the condition of the wind turbine bearing are inputted to the MSVM for fault pattern recognition. The results indicate that the SSI-MSVM method is effective in fault diagnosis for a wind turbine bearing and can successfully identify fault types of bearing and achieve higher diagnostic accuracy than that of K-means clustering, fuzzy means clustering and traditional SVM.
文摘针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨识方法。首先将采集得到的GIS振动信号转化为图信号,并利用图傅里叶变换技术变换至图谱域进行分析处理;然后提取图谱功率谱熵作为表征GIS不同状态的特征参数;最后利用MMD距离判别函数实现GIS不同工况下的状态辨识。实验结果表明:在噪声干扰的情况下,所提方法能够有效提取GIS不同状态下的特征参数,并成功区分出屏蔽罩松动及内部异物缺陷,状态辨识精度高达93.89%,较常规方法有明显提高。