High voltage direct current (HVDC) transmission is an economical option for transmitting a large amount of power over long distances. Initially, HVDC was developed using thyristor-based current source converters (CSC)...High voltage direct current (HVDC) transmission is an economical option for transmitting a large amount of power over long distances. Initially, HVDC was developed using thyristor-based current source converters (CSC). With the development of semiconductor devices, a voltage source converter (VSC)-based HVDC system was introduced, and has been widely applied to integrate large-scale renewables and network interconnection. However, the VSC-based HVDC system is vulnerable to DC faults and its protection becomes ever more important with the fast growth in number of installations. In this paper, detailed characteristics of DC faults in the VSC-HVDC system are presented. The DC fault current has a large peak and steady values within a few milliseconds and thus high-speed fault detection and isolation methods are required in an HVDC grid. Therefore, development of the protection scheme for a multi-terminal VSC-based HVDC system is challenging. Various methods have been developed and this paper presents a comprehensive review of the different techniques for DC fault detection, location and isolation in both CSC and VSC-based HVDC transmission systems in two-terminal and multi-terminal network configurations.展开更多
文摘High voltage direct current (HVDC) transmission is an economical option for transmitting a large amount of power over long distances. Initially, HVDC was developed using thyristor-based current source converters (CSC). With the development of semiconductor devices, a voltage source converter (VSC)-based HVDC system was introduced, and has been widely applied to integrate large-scale renewables and network interconnection. However, the VSC-based HVDC system is vulnerable to DC faults and its protection becomes ever more important with the fast growth in number of installations. In this paper, detailed characteristics of DC faults in the VSC-HVDC system are presented. The DC fault current has a large peak and steady values within a few milliseconds and thus high-speed fault detection and isolation methods are required in an HVDC grid. Therefore, development of the protection scheme for a multi-terminal VSC-based HVDC system is challenging. Various methods have been developed and this paper presents a comprehensive review of the different techniques for DC fault detection, location and isolation in both CSC and VSC-based HVDC transmission systems in two-terminal and multi-terminal network configurations.