期刊文献+
共找到543篇文章
< 1 2 28 >
每页显示 20 50 100
Research on Machine Tool Fault Diagnosis and Maintenance Optimization in Intelligent Manufacturing Environments
1
作者 Feiyang Cao 《Journal of Electronic Research and Application》 2024年第4期108-114,共7页
In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machin... In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects. 展开更多
关键词 Intelligent manufacturing machine tool fault diagnosis Predictive maintenance Big data machine learning System integration
下载PDF
The Research on Hybrid Intelligent Fault-diagnosisSystem of CNC Machine Tools
2
作者 WANG Runxiao ZHOU Hui +1 位作者 QIN Xiansheng JIAN Chongjun 《International Journal of Plant Engineering and Management》 2000年第4期129-135,共7页
After analyzing the structure and characteristics of the hybrid intelligent diagnosis system of CNC machine toolsCNC-HIDS), we describe the intelligent hybrid mechanism of the CNC-HIDS, and present the evaluation and ... After analyzing the structure and characteristics of the hybrid intelligent diagnosis system of CNC machine toolsCNC-HIDS), we describe the intelligent hybrid mechanism of the CNC-HIDS, and present the evaluation and the running instance of the system. Through tryout and validation, we attain satisfactory results. 展开更多
关键词 cnc machine tools hybrid mechanism intelligent diagnosis machine fault
下载PDF
Application of Machine Learning in Electronic Device Fault Diagnosis
3
作者 Mingqi Ma 《Journal of Computer and Communications》 2024年第11期130-140,共11页
As electronic devices become increasingly complex, traditional fault diagnosis methods face significant challenges. Machine learning technologies offer new opportunities and solutions for electronic device fault diagn... As electronic devices become increasingly complex, traditional fault diagnosis methods face significant challenges. Machine learning technologies offer new opportunities and solutions for electronic device fault diagnosis. This paper explores the application of machine learning in electronic device fault diagnosis, focusing on common machine learning algorithms, data preprocessing techniques, and diagnostic model construction methods. Case study analysis elucidates the advantages of machine learning in improving diagnostic accuracy, reducing diagnosis time, and implementing predictive maintenance. Research indicates that machine learning techniques can effectively enhance the efficiency and precision of electronic device fault diagnosis, providing robust support for device reliability and maintenance strategy optimization. In the future, as artificial intelligence technology further develops, machine learning will play an increasingly important role in the field of electronic device fault diagnosis. 展开更多
关键词 machine Learning Electronic Devices fault diagnosis Predictive maintenance Artificial Intelligence
下载PDF
Application of MBAM Neural Network in CNC Machine Fault Diagnosis 被引量:1
4
作者 宋刚 胡德金 《Journal of Donghua University(English Edition)》 EI CAS 2004年第4期131-138,共8页
In order to improve the bidirectional associative memory(BAM) performance, a modified BAM model(MBAM) is used to enhance neural network(NN)’s memory capacity and error correction capability, theoretical analysis and ... In order to improve the bidirectional associative memory(BAM) performance, a modified BAM model(MBAM) is used to enhance neural network(NN)’s memory capacity and error correction capability, theoretical analysis and experiment results illuminate that MBAM performs much better than the original BAM. The MBAM is used in computer numeric control(CNC) machine fault diagnosis, it not only can complete fault diagnosis correctly but also have fairly high error correction capability for disturbed Input Information sequence.Moreover MBAM model is a more convenient and effective method of solving the problem of CNC electric system fault diagnosis. 展开更多
关键词 BAM neural network cnc machine electric system memory capacity fault diagnosis fault tolerance property.
下载PDF
Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance:A Review
5
作者 Md Naeem Hossain Md Mustafizur Rahman Devarajan Ramasamy 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期951-996,共46页
Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically.Hence,there is a growing demand for advanced fault diagnosis technologies ... Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically.Hence,there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle break-downs.Due to vehicles’increasingly complex and autonomous nature,there is a growing urgency to investigate novel diagnosis methodologies for improving safety,reliability,and maintainability.While Artificial Intelligence(AI)has provided a great opportunity in this area,a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis(VFD)systems is unavailable.Therefore,this review brings new insights into the potential of AI in VFD methodologies and offers a broad analysis using multiple techniques.We focus on reviewing relevant literature in the field of machine learning as well as deep learning algorithms for fault diagnosis in engines,lifting systems(suspensions and tires),gearboxes,and brakes,among other vehicular subsystems.We then delve into some examples of the use of AI in fault diagnosis and maintenance for electric vehicles and autonomous cars.The review elucidates the transformation of VFD systems that consequently increase accuracy,economization,and prediction in most vehicular sub-systems due to AI applications.Indeed,the limited performance of systems based on only one of these AI techniques is likely to be addressed by combinations:The integration shows that a single technique or method fails its expectations,which can lead to more reliable and versatile diagnostic support.By synthesizing current information and distinguishing forthcoming patterns,this work aims to accelerate advancement in smart automotive innovations,conforming with the requests of Industry 4.0 and adding to the progression of more secure,more dependable vehicles.The findings underscored the necessity for cross-disciplinary cooperation and examined the total potential of AI in vehicle default analysis. 展开更多
关键词 Artificial intelligence machine learning deep learning vehicle fault diagnosis predictive maintenance
下载PDF
Reliability Analysis of Electrical System of CNC Machine Tool Based on Dynamic Fault Tree Analysis Method 被引量:2
6
作者 晏晶 尹珩苏 +2 位作者 周杰 李彦锋 黄洪钟 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期1042-1046,共5页
The electrical system of CNC machine tool is very complex which involves many uncertain factors and dynamic stochastic characteristics when failure occurs.Therefore,the traditional system reliability analysis method,f... The electrical system of CNC machine tool is very complex which involves many uncertain factors and dynamic stochastic characteristics when failure occurs.Therefore,the traditional system reliability analysis method,fault tree analysis(FTA)method,based on static logic and static failure mechanism is no longer applicable for dynamic systems reliability analysis.Dynamic fault tree(DFT)analysis method can solve this problem effectively.In this method,DFT first should be pretreated to get a simplified fault tree(FT);then the FT was modularized to get the independent static subtrees and dynamic subtrees.Binary decision diagram(BDD)analysis method was used to analyze static subtrees,while an approximation algorithm was used to deal with dynamic subtrees.When the scale of each subtree is smaller than the system scale,the analysis efficiency can be improved significantly.At last,the usefulness of this DFT analysis method was proved by applying it to analyzing the reliability of electrical system. 展开更多
关键词 RELIABILITY dynamic fault tree MODULARIZATION binary decision diagram approximation algorithm cnc machine tool
下载PDF
Intelligent System Design for Stator Windings Faults Diagnosis:Suitable for Maintenance Work
7
作者 Lane M.Rabelo Baccarini Vinícius S.Avelar +1 位作者 Valceres Vieira R.E.Silva Gleison F.V.Amaral 《Journal of Software Engineering and Applications》 2013年第10期526-532,共7页
The short circuit is a severe fault that occurs in the stator windings. Therefore, it is very important to diagnose this type of failure in its beginning before it causes unscheduled stop and the machine loss. In this... The short circuit is a severe fault that occurs in the stator windings. Therefore, it is very important to diagnose this type of failure in its beginning before it causes unscheduled stop and the machine loss. In this context, the Support Vector Machine (SVM) is a tool of considerable importance for standard classification. From some training data, it can diagnose whether or not there is a short circuit beginning, and which is important for predictive maintenance. This work proposes a technique for early detection of a short circuit between the turns aiming at its implementation in a real plant. The paper shows simulation and experimental results, and validates the proposed technique. 展开更多
关键词 fault diagnosis Support Vector machines maintenance Work Software Tool Winding Short-Circuit
下载PDF
Review:Measurement-Based Monitoring and Fault Identification in Centrifugal Pumps
8
作者 Janani Shruti Rapur Rajiv Tiwari +1 位作者 Aakash Dewangan D.J.Bordoloi 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第2期25-47,共23页
Condition based maintenance(CBM) is one of the solutions to machinery maintenance requirements. Latest approaches to CBM aim at reducing human engagement in the real-time fault detection and decision making. Machine l... Condition based maintenance(CBM) is one of the solutions to machinery maintenance requirements. Latest approaches to CBM aim at reducing human engagement in the real-time fault detection and decision making. Machine learning techniques like fuzzy-logic-based systems, neural networks, and support vector machines help to reduce human involvement. Most of these techniques provide fault information with 100% confidence. It is undeniably apparent that this area has a vast application scope. To facilitate future exploration, this review is presented describing the centrifugal pump faults, the signals they generate, their CBM based diagnostic schemes, and case studies for blockage and cavitation fault detection in centrifugal pump(CP) by performing the experiment on test rig. The classification accuracy is above 98% for fault detection. This review gives a head-start to new researchers in this field and identifies the un-touched areas pertaining to CP fault diagnosis. 展开更多
关键词 centrifugal pumps condition-based maintenance fault diagnosis machine learning techniques REVIEW
下载PDF
柔性制造系统中CNC机床故障诊断机理研究 被引量:6
9
作者 李慧 崔成玲 李新宏 《计算机应用研究》 CSCD 北大核心 2009年第8期2982-2984,共3页
为了及时发现处理柔性制造系统数控机床的故障或异常现象,设计了CNC在线故障诊断测试系统。该系统不仅便于查找数控机床故障的一个或多个症结,可以快捷、准确地对CNC故障定位,而且解决了诊断处理与知识应用中的相关问题。为了对CNC设备... 为了及时发现处理柔性制造系统数控机床的故障或异常现象,设计了CNC在线故障诊断测试系统。该系统不仅便于查找数控机床故障的一个或多个症结,可以快捷、准确地对CNC故障定位,而且解决了诊断处理与知识应用中的相关问题。为了对CNC设备终端提供可靠的故障排除建议,对伺服控制组件与后台服务关联关系进行深入剖析,并对故障数据库进行描述与测试程序设计,解决了系统维护、扩展与升级操作等问题。 展开更多
关键词 机床故障诊断 cnc伺服控制组件 诊断处理 知识应用
下载PDF
基于Web的CNC机床远程故障诊断系统 被引量:4
10
作者 李鹏南 尹喜云 黄振宇 《机床与液压》 北大核心 2007年第3期193-195,共3页
对基于Web的Multi-agent的远程故障诊断技术进行了研究,提出基于知识的Multi-agent的数控机床(CNC)的远程故障诊断系统,该系统由诊断和学习agents(DLA)、远程设备agents(RMA)和中央管理agent(CMA)组成。通过这些Agents之间的协作和通信... 对基于Web的Multi-agent的远程故障诊断技术进行了研究,提出基于知识的Multi-agent的数控机床(CNC)的远程故障诊断系统,该系统由诊断和学习agents(DLA)、远程设备agents(RMA)和中央管理agent(CMA)组成。通过这些Agents之间的协作和通信,实现CNC机床的远程监测和故障诊断。 展开更多
关键词 远程故障诊断 MULTI—AGENT cnc机床
下载PDF
CNC装置故障诊断专家系统的研究与应用 被引量:2
11
作者 罗琦 王润孝 苟亚莉 《机械科学与技术》 CSCD 北大核心 1997年第2期333-337,共5页
简述了专家系统应用于CNC故障诊断的重要意义。结合CNC系统故障诊断问题的特点。
关键词 数控机床 故障诊断 人工智能 专家系统
下载PDF
基于Sugeno模糊模型的CNC机床故障诊断方法 被引量:1
12
作者 郭佑民 宋刚 《兰州交通大学学报》 CAS 2007年第1期89-91,共3页
通过将Sugeno模糊模型用于数控机床故障诊断系统的方式,实现了对各个诊断专家诊断结果的模糊综合,消除了诊断专家诊断结论的随意性,保证诊断结论的准确.利用此方法基于诊断专家系统技术可以实现对数控机床的自动诊断,诊断结果准确可靠.
关键词 故障诊断 模糊规则 Sugeno模型 数控机床
下载PDF
数控机床CNC系统的故障诊断和维修研究 被引量:1
13
作者 杜毓瑾 《机械管理开发》 2012年第2期29-30,共2页
数控机床CNC系统故障类型繁多,故障点难确定。介绍了数控机床CNC系统的故障诊断,对常用的故障诊断和维修方法进行了综述,通过在实践中遇到的问题进行经验总结,根据数控系统的故障现象提出了有效的处理方法,以便为相关研究提供参考,供使... 数控机床CNC系统故障类型繁多,故障点难确定。介绍了数控机床CNC系统的故障诊断,对常用的故障诊断和维修方法进行了综述,通过在实践中遇到的问题进行经验总结,根据数控系统的故障现象提出了有效的处理方法,以便为相关研究提供参考,供使用者及时排除故障。 展开更多
关键词 cnc系统 故障 诊断 维修
下载PDF
基于多模 态集成卷积神经网络的数控机床齿轮箱故障诊断 被引量:1
14
作者 姜广君 杨永吉 王赜 《机床与液压》 北大核心 2024年第8期202-207,共6页
针对数控机床齿轮箱在实际工作环境中负载多变且噪声干扰大、传统神经网络难以充分提取信号中的故障特征等问题,提出一种多模态集成卷积神经网络(MECNN)用于数控机床齿轮箱故障诊断。该方法将多模态融合技术与多个卷积神经网络结合,利... 针对数控机床齿轮箱在实际工作环境中负载多变且噪声干扰大、传统神经网络难以充分提取信号中的故障特征等问题,提出一种多模态集成卷积神经网络(MECNN)用于数控机床齿轮箱故障诊断。该方法将多模态融合技术与多个卷积神经网络结合,利用快速傅里叶变换方法将时域信号转换成频域信号;利用时域信号和频域信号对2个卷积神经网络进行训练,使模型能够分别从时域和频域2个角度提取特征,再将浅层特征融合;最后,将融合后的特征输入到卷积神经网络中进行故障特征的深度挖掘,并进行故障诊断。使用东南大学的齿轮箱数据集进行验证,设计了2种特征融合的方法并进行了对比。实验结果表明:在噪声下,MECNN模型用于故障诊断的准确性和鲁棒性均优于单一的时域CNN和频域CNN。 展开更多
关键词 数控机床齿轮箱 故障诊断 多模态学习 卷积神经网络
下载PDF
可靠性约束下的重型数控机床维修策略 被引量:1
15
作者 陈红霞 郭春成 +2 位作者 李宏悦 李晨光 张俊峰 《机床与液压》 北大核心 2024年第8期189-195,共7页
针对TH65140重型数控机床的各个子系统进行危害度分析,制定经济高效的预防性维修策略。通过威布尔分布对重型数控机床进行可靠性建模,在可靠度约束下,建立以最小维修费用和最大可用度为目标的机床子系统定期预防性维修模型,对模型进行... 针对TH65140重型数控机床的各个子系统进行危害度分析,制定经济高效的预防性维修策略。通过威布尔分布对重型数控机床进行可靠性建模,在可靠度约束下,建立以最小维修费用和最大可用度为目标的机床子系统定期预防性维修模型,对模型进行求解得到了最优的维修次数及维修间隔期,制定出了重型数控机床的预防性维修策略。 展开更多
关键词 重型数控机床 威布尔分布 维修策略 可靠性
下载PDF
数控机床电动主轴WPD-TSNE-SVM模型故障诊断
16
作者 李坤宏 江桂云 朱代兵 《机械科学与技术》 CSCD 北大核心 2024年第5期832-836,共5页
为了提高数控机床电动主轴故障诊断效率,设计了一种WPD-TSNE-SVM组合模型。利用小波包方法分解主轴振动信号,并完成样本集TSNE降维的过程,利用SVM完成重构特征的故障分类。构建数控机床主轴信号混合特征空间向量,并进行故障诊断分析。... 为了提高数控机床电动主轴故障诊断效率,设计了一种WPD-TSNE-SVM组合模型。利用小波包方法分解主轴振动信号,并完成样本集TSNE降维的过程,利用SVM完成重构特征的故障分类。构建数控机床主轴信号混合特征空间向量,并进行故障诊断分析。研究结果表明:TSNE方法训练样数据形成规律分布特点,采用非线性SVM多故障分类器实现小波包混合特征的故障准确分类。根据径向基核函数建立的非线性SVM诊断方法获得更高准确率。该方法诊断轴承运行故障,获得更高维护效率,确保数控机床主轴运行稳定性。 展开更多
关键词 数控机床 电动主轴 故障诊断 小波包分解
下载PDF
时域流形特征增强在数控机床轴承故障诊断中的应用 被引量:1
17
作者 黄日进 《机械研究与应用》 2024年第1期160-162,169,共4页
以数控机床轴承的时域振动信号为研究对象,提出一种基于流形学习的特征增强方法。首先,将采集信号的时间序列进行相空间重构,通过计算子相空间的信息熵来构建信号在特征空间中的表示,并以流形距离作为原始信号来集中不同故障类型的度量... 以数控机床轴承的时域振动信号为研究对象,提出一种基于流形学习的特征增强方法。首先,将采集信号的时间序列进行相空间重构,通过计算子相空间的信息熵来构建信号在特征空间中的表示,并以流形距离作为原始信号来集中不同故障类型的度量。然后,使用等距特征映射算法求取信号在特征空间中同胚的低维流形,其结果可用于对故障类型的分类判别。经实例数据集的验证分析发现,信息熵—等距特征映射变换能够在低维特征空间表达并强化轴承时域信号的故障类型特征,可有效应用于数控机床轴承单一和复合故障场景的设备运行诊断。 展开更多
关键词 特征增强 流形学习 数控机床轴承 故障诊断 等距特征映射
下载PDF
刀库式加工中心自动换刀系统故障诊断与维修
18
作者 雷波 刘华华 许颖 《大众科学》 2024年第5期94-96,共3页
我国是制造大国,数控机床作为工业生产的重要设备,能够有效提升工业生产自动化水平。主要探讨了刀库式加工中心自动换刀系统的故障诊断与维修策略,详细介绍了自动换刀系统的组成,包括自动换刀装置和自动换刀控制系统,并分析了刀库故障... 我国是制造大国,数控机床作为工业生产的重要设备,能够有效提升工业生产自动化水平。主要探讨了刀库式加工中心自动换刀系统的故障诊断与维修策略,详细介绍了自动换刀系统的组成,包括自动换刀装置和自动换刀控制系统,并分析了刀库故障、换刀机械手故障以及主轴松刀故障等多种常见问题。在自动换刀控制系统故障方面,着重分析了换刀点漂移、刀库乱刀和换刀超时等问题,并提出了相应的诊断和维修策略。希望本文的研究能为相关技术人员提供参考和借鉴。 展开更多
关键词 加工中心 自动换刀系统 故障诊断 维修 策略
下载PDF
基于AR技术的高档数控机床运维平台设计研究
19
作者 刘敏洋 肖佳佳 +1 位作者 李莉 刘华 《制造技术与机床》 北大核心 2024年第10期42-47,共6页
为响应中国制造业智能转型需求,针对传统二维交互界面的数控机床运维系统在人机交互过程中容易造成信息认知偏差、维修错误等问题,研究探讨了AR技术的优势及其运用于高档数控机床运维领域的可能性,构建了一套基于AR技术的高档数控机床... 为响应中国制造业智能转型需求,针对传统二维交互界面的数控机床运维系统在人机交互过程中容易造成信息认知偏差、维修错误等问题,研究探讨了AR技术的优势及其运用于高档数控机床运维领域的可能性,构建了一套基于AR技术的高档数控机床运维平台框架,并以Unity3D为载体,设计开发了基于AR技术的高档数控机床运维平台。实现了运维人员和数控机床之间面对面的AR人机交互,提升了数控机床运维的高效及智能管理效率。 展开更多
关键词 数控机床智能运维 AR增强现实技术 智能制造 人机交互
下载PDF
数控机床电气控制部分的维护和保养研究
20
作者 吴义成 《仪器仪表用户》 2024年第1期19-21,共3页
数控设备是一种集机械、电气、液压、气动和数控系统为一体的高科技产品。数控机床维护和保养水平的高低,直接决定了一台数控机床运行的可靠性程度和故障率。本文就数控机床电气控制部分的维护和保养进行了系统阐述,针对数控机床电气控... 数控设备是一种集机械、电气、液压、气动和数控系统为一体的高科技产品。数控机床维护和保养水平的高低,直接决定了一台数控机床运行的可靠性程度和故障率。本文就数控机床电气控制部分的维护和保养进行了系统阐述,针对数控机床电气控制部分如何更高效且方便地维护及查找故障,进行了开发性的研究,提出了一种高效查找强电故障的方法;为能实现更高层次的智能诊断建立了硬件基础。 展开更多
关键词 数控机床 电气控制 维护和保养 故障 智能诊断
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部