期刊文献+
共找到820篇文章
< 1 2 41 >
每页显示 20 50 100
Fault Diagnosis of Power Electronic Circuits Based on Adaptive Simulated Annealing Particle Swarm Optimization 被引量:1
1
作者 Deye Jiang Yiguang Wang 《Computers, Materials & Continua》 SCIE EI 2023年第7期295-309,共15页
In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its i... In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits. 展开更多
关键词 fault diagnosis power electronic circuit particle swarm optimization backpropagation neural network
下载PDF
Feature evaluation and extraction based on neural network in analog circuit fault diagnosis 被引量:16
2
作者 Yuan Haiying Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期434-437,共4页
Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit feature... Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method. 展开更多
关键词 fault diagnosis Feature extraction Analog circuit neural network Principal component analysis.
下载PDF
Wavelet neural network based fault diagnosis in nonlinear analog circuits 被引量:16
3
作者 Yin Shirong Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期521-526,共6页
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ... The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility. 展开更多
关键词 fault diagnosis nonlinear analog circuits wavelet analysis neural networks.
下载PDF
Combinatorial Optimization Based Analog Circuit Fault Diagnosis with Back Propagation Neural Network 被引量:1
4
作者 李飞 何佩 +3 位作者 王向涛 郑亚飞 郭阳明 姬昕禹 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期774-778,共5页
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of... Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN. 展开更多
关键词 analog circuit fault diagnosis back propagation(BP) neural network combinatorial optimization TOLERANCE genetic algorithm(G A) Levenberg-Marquardt algorithm(LMA)
下载PDF
Fault Diagnosis of Analog Circuit Based on PSO and BP Neural Network 被引量:1
5
作者 JI Mengran CHEN Gang +1 位作者 YANG Qing ZHANG Jinge 《沈阳理工大学学报》 CAS 2014年第5期90-94,共5页
In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural... In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural network.The model can not only overcome the limitations of the slow convergence and the local extreme values by basic BP algorithm,but also improve the learning ability and generalization ability with a higher precision.The response signals of analog circuit is preprocessed by Wavelet Packet Transform(WPT)as the fault feature.The simulation result shows that the proposed method has higher diagnostic accuracy and faster convergence speed,which is effective for fault location. 展开更多
关键词 错误判断 BP神经式网络 颗粒群最佳化 模拟线路
下载PDF
APPLICATION OF ASSOCIATIVE MEMORY NEURAL NETWORK IN HIGH VOLTAGE TRANSMISSIONLINE FAULT DIAGNOSIS
6
作者 姜惠兰 孙雅明 《Transactions of Tianjin University》 EI CAS 1999年第1期36-41,共6页
Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),t... Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),the conception of 'fake attaction region' is presented to expand the attraction region artificially,and for the feedback Hopfield bidirectional AM NN (BAM-NN),the measure to add redundant neurons is taken to enhance NN's memory capacity and fault-tolerance property. Study results show that the NNs built not only can complete fault diagnosis correctly but also have fairly high fault-tolerance ability for disturbed input information sequence. Moreover FNN is a more convenient and effective method of solving the problem of power system fault diagnosis. 展开更多
关键词 neural network power system fault diagnosis fault-tolerance property
下载PDF
A Neural-based L1-Norm Optimization Approach for Fault Diagnosis of Nonlinear Resistive Circuits 被引量:2
7
作者 Yigang He School of Electrical & Information Engineering, Hunan Univ,Changsha 410082,P.R.China Yichuang Sun Department of Electronic,Communication & electrical Engineering,Faculty of Engineering and Information Sciences,University of Hertfordshire,Hatfie 《湖南大学学报(自然科学版)》 EI CAS CSCD 2000年第S2期143-147,共5页
This paper deals with fault isolation in nonlinear analog circuits with tolerance under an insufficient number of independent voltage measurements.A neural network-based L1-norm optimization approach is proposed and u... This paper deals with fault isolation in nonlinear analog circuits with tolerance under an insufficient number of independent voltage measurements.A neural network-based L1-norm optimization approach is proposed and utilized in locating the most likely faulty elements in nonlinear circuits.The validity of the proposed method is verified by both extensive computer simulations and practical examples.One simulation example is presented in the paper. 展开更多
关键词 fault diagnosis neural networks Optimization methods NONLINEAR circuitS Anlog circuitS
下载PDF
Employing adaptive fuzzy computing for RCP intelligent control and fault diagnosis
8
作者 Ashraf Aboshosha Hisham A.Hamad 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第9期82-93,共12页
Loss of coolant accident(LOCA),loss of fluid accident(LOFA),and loss of vacuum accident(LOVA)are the most severe accidents that can occur in nuclear power reactors(NPRs).These accidents occur when the reactor loses it... Loss of coolant accident(LOCA),loss of fluid accident(LOFA),and loss of vacuum accident(LOVA)are the most severe accidents that can occur in nuclear power reactors(NPRs).These accidents occur when the reactor loses its cooling media,leading to uncontrolled chain reactions akin to a nuclear bomb.This article is focused on exploring methods to prevent such accidents and ensure that the reactor cooling system remains fully controlled.The reactor coolant pump(RCP)has a pivotal role in facilitating heat exchange between the primary cycle,which is connected to the reactor core,and the secondary cycle associated with the steam generator.Furthermore,the RCP is integral to preventing catastrophic events such as LOCA,LOFA,and LOVA accidents.In this study,we discuss the most critical aspects related to the RCP,specifically focusing on RCP control and RCP fault diagnosis.The AI-based adaptive fuzzy method is used to regulate the RCP’s speed and torque,whereas the neural fault diagnosis system(NFDS)is implemented for alarm signaling and fault diagnosis in nuclear reactors.To address the limitations of linguistic and statistical intelligence approaches,an integration of the statistical approach with fuzzy logic has been proposed.This integrated system leverages the strengths of both methods.Adaptive fuzzy control was applied to the VVER 1200 NPR-RCP induction motor,and the NFDS was implemented on the Kori-2 NPR-RCP. 展开更多
关键词 Nuclear power plant(NPP) Reactor coolant pump fault diagnosis Reactor passive safety neural network Adaptive fuzzy
下载PDF
Research method of circuit fault diagnosis based on FCM
9
作者 周德新 李伟 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期290-294,共5页
Using fuzzy C cluster mean (FCM), fuzzy theory and neural network, a fault diagnosis method was proposed, which was based on fuzzy C-means clustering algorithm of neural network that was applied in non-linear analog c... Using fuzzy C cluster mean (FCM), fuzzy theory and neural network, a fault diagnosis method was proposed, which was based on fuzzy C-means clustering algorithm of neural network that was applied in non-linear analog circuits and in diagnoses the ARNIC 429 reception circuit of aviation aircraft avionics. The C cluster algorithm can make the amount of the fuzzy rule automatically and can create an initial fuzzy rule database of fault diagnosis. A type of fuzzy neural network and a fault tree were generated. The algorithm avoids the disadvantage that gets into the part of optimum circumstance. A validate application was implemented, which proves that the method is effective. Therefore, the method is superior to the traditional methods in fault diagnosis, and the efficiency is heavily improved. 展开更多
关键词 C CLUSTER algorithm neural network ANALOG circuit fault diagnosis
下载PDF
A Neural-based Algorithm for Diagnosis of Networks
10
作者 Yigang He Ming Zhou (School of Electrical and Information Engineering, Hunan University, 410082,China) 《湖南大学学报(自然科学版)》 EI CAS CSCD 2000年第S2期139-142,共4页
This paper presents a neural based algorithm to locate analog fault. It uses the characteristic of the category of BP networks to identify k faults of analog networks. This method trains the BP networks to general fau... This paper presents a neural based algorithm to locate analog fault. It uses the characteristic of the category of BP networks to identify k faults of analog networks. This method trains the BP networks to general fault dictionary with extending ability. The proposed method can be used to locate faults on real-time. 展开更多
关键词 neural networkS fault diagnosis circuit with Tolerancesl
下载PDF
基于短时傅里叶变换和深度网络的模块化多电平换流器子模块IGBT开路故障诊断 被引量:1
11
作者 朱琴跃 于逸尘 +2 位作者 占岩文 李杰 华润恺 《电工技术学报》 EI CSCD 北大核心 2024年第12期3840-3854,共15页
针对现有模块化多电平换流器(MMC)子模块故障诊断过程中所需传感器较多、测量干扰较大等问题,提出一种基于深度学习的MMC子模块IGBT开路故障诊断方法。在对MMC子模块开路故障特征进行分析的基础上,利用短时傅里叶变换(STFT)提取桥臂电... 针对现有模块化多电平换流器(MMC)子模块故障诊断过程中所需传感器较多、测量干扰较大等问题,提出一种基于深度学习的MMC子模块IGBT开路故障诊断方法。在对MMC子模块开路故障特征进行分析的基础上,利用短时傅里叶变换(STFT)提取桥臂电压信号的谐波分量信息作为故障诊断所需的特征参数。将所得到的特征参数进行处理后构建故障诊断样本,在通过深度置信网络实现故障类型快速检测的基础上,依据不同故障类型,构建多个基于卷积神经网络的故障定位网络,进而实现开路故障的检测与定位。通过129电平的MMC系统仿真模型和降功率的MMC实验系统搭建,对该文所提方法进行了验证。仿真和实验结果表明,所提故障诊断方法可以在减少传感器数量的基础上实现子模块开路故障的诊断,提高系统的可靠性。 展开更多
关键词 模块化多电平换流器 开路故障诊断 短时傅里叶变换 卷积神经网络
下载PDF
基于IHHO-BP神经网络的模拟电路故障诊断 被引量:1
12
作者 王力 张露露 《电子测量与仪器学报》 CSCD 北大核心 2024年第5期238-248,共11页
针对模拟电路故障类型多、故障状态不稳定以及故障数据冗余,使得模拟电路故障诊断困难的问题,提出利用改进哈里斯鹰算法(improved Harris Hawks optimization, IHHO)优化反向传播(back propagation, BP)神经网络,实现模拟电路故障特征... 针对模拟电路故障类型多、故障状态不稳定以及故障数据冗余,使得模拟电路故障诊断困难的问题,提出利用改进哈里斯鹰算法(improved Harris Hawks optimization, IHHO)优化反向传播(back propagation, BP)神经网络,实现模拟电路故障特征选择与诊断。首先,将非线性自适应因子、柯西变异和随机差分扰动引入哈里斯鹰算法,实现收敛速度和精度的提升;其次,采用IHHO对模拟电路的单一故障和组合故障仿真数据进行特征选择,完成数据预处理;最后,采用IHHO-BP算法,对预处理后的故障数据进行训练和测试,实现模拟电路故障诊断。诊断结果表明,所提方法的诊断精度相较于其他算法提升了5.5%。 展开更多
关键词 模拟电路 特征选择 故障诊断 改进哈里斯鹰算法 反向传播神经网络
下载PDF
基于DCNN的ZPW-2000A无绝缘轨道电路故障诊断研究
13
作者 林俊亭 牛鹏远 《电子测量与仪器学报》 CSCD 北大核心 2024年第6期171-180,共10页
针对ZPW-2000A无绝缘轨道电路故障发生的多样性和不确定性导致的故障诊断效率低的问题,从故障特征提取和故障分类的角度出发,提出一种基于深度卷积神经网络(DCNN)的轨道电路故障诊断方法。通过故障分析总结出12种轨道电路故障状态,并将... 针对ZPW-2000A无绝缘轨道电路故障发生的多样性和不确定性导致的故障诊断效率低的问题,从故障特征提取和故障分类的角度出发,提出一种基于深度卷积神经网络(DCNN)的轨道电路故障诊断方法。通过故障分析总结出12种轨道电路故障状态,并将不同故障状态下的轨道电路监测数据进行标准化处理,作为DCNN模型的输入。模型采用卷积-池化结构提取轨道电路的关键特征并滤除冗余特征。BP神经网络作为模型的全连接层,并结合Softmax函数进行故障分类。通过k折交叉验证法优化模型结构,确定最佳模型。实验结果表明,采用4层卷积-池化层结构的轨道电路故障诊断模型在诊断准确率方面达到了98.48%,较同为最优模型的长短期记忆网络(LSTM)模型、深度前馈网络(DFN)模型、双向长短时记忆网络模型(BiLSTM)与CNN-LSTM组合模型分别提升了6.06%,6.06%,3.33%与2.27%,训练收敛速度分别快了大约1250、4250、1250与1450次,且训练时的损失波动更小。本研究提升了轨道电路故障诊断效率,为轨道电路的故障诊断任务提供了一种新的有效方法。 展开更多
关键词 无绝缘轨道电路 深度卷积神经网络 BP神经网络 k折交叉验证 故障诊断
下载PDF
基于电机电流的高压断路器弹簧操作机构的LM-BP故障诊断算法
14
作者 赵莉华 冀一玮 +4 位作者 吴月峥 吴迅 宁文军 黄小龙 任俊文 《电测与仪表》 北大核心 2024年第9期48-55,84,共9页
BP(back propagation)神经网络由于具有线性映射能力强及自适应能力强等优点,常被用于高压断路器弹簧操作机构的故障诊断中,但易陷入局部最小点限制了网络的收敛速度和分类精确度。文中提出了一种基于L-M算法优化BP神经网络的高压断路... BP(back propagation)神经网络由于具有线性映射能力强及自适应能力强等优点,常被用于高压断路器弹簧操作机构的故障诊断中,但易陷入局部最小点限制了网络的收敛速度和分类精确度。文中提出了一种基于L-M算法优化BP神经网络的高压断路器操作机构故障诊断方法,分析了神经网络的数学模型及映射关系,运用L-M算法对传统BP网络进行优化,解决了传统BP神经网络梯度下降法存在局部最小化、易产生平坦区等问题,有效地提高了算法的训练速度,同时提高了分类的精确度。诊断结果表明:L-M算法优化后的BP神经网络能有效地实现高压断路器操作机构故障诊断。文中研究内容对高压断路器操作机构故障诊断提供了思路与方法,对提高高压断路器安全可靠性具有重要意义。 展开更多
关键词 高压断路器 弹簧操作机构 分合闸电机电流特性 故障诊断 BP神经网络
下载PDF
Soft Fault Diagnosis for Analog Circuits Based on Slope Fault Feature and BP Neural Networks 被引量:6
15
作者 胡梅 王红 +1 位作者 胡庚 杨士元 《Tsinghua Science and Technology》 SCIE EI CAS 2007年第S1期26-31,共6页
Fault diagnosis is very important for development and maintenance of safe and reliable electronic circuits and systems. This paper describes an approach of soft fault diagnosis for analog circuits based on slope fault... Fault diagnosis is very important for development and maintenance of safe and reliable electronic circuits and systems. This paper describes an approach of soft fault diagnosis for analog circuits based on slope fault feature and back propagation neural networks (BPNN). The reported approach uses the voltage relation function between two nodes as fault features; and for linear analog circuits, the voltage relation function is a linear function, thus the slope is invariant as fault feature. Therefore, a unified fault feature for both hard fault (open or short fault) and soft fault (parametric fault) is extracted. Unlike other NN-based diagnosis methods which utilize node voltages or frequency response as fault features, the reported BPNN is trained by the extracted feature vectors, the slope features are calculated by just simulating once for each component, and the trained BPNN can achieve all the soft faults diagnosis of the component. Experiments show that our approach is promising. 展开更多
关键词 soft fault diagnosis analog circuit back propagation neural network (BPNN) voltage relation function SLOPE
原文传递
基于d-q变换及WOA-LSTM的异步电机定子匝间短路故障诊断方法
16
作者 王喜莲 秦嘉翼 耿民 《电机与控制学报》 EI CSCD 北大核心 2024年第6期56-65,共10页
为了实现对异步电机定子绕组匝间短路故障的可靠在线诊断,提出一种基于d-q变换及鲸鱼优化算法(WOA)优化的长短期记忆网络(LSTM)的故障诊断方法。通过理论推导可知,d-q变换可有效提取定子电流中的特征频谱数据。采用鲸鱼优化算法对长短... 为了实现对异步电机定子绕组匝间短路故障的可靠在线诊断,提出一种基于d-q变换及鲸鱼优化算法(WOA)优化的长短期记忆网络(LSTM)的故障诊断方法。通过理论推导可知,d-q变换可有效提取定子电流中的特征频谱数据。采用鲸鱼优化算法对长短期记忆网络中的3个关键参数进行优化,建立WOA-LSTM故障分类模型。为了验证基于d-q变换和WOA-LSTM故障诊断方法的有效性,分别以小波变换、快速傅里叶变换及d-q变换提取电流频谱数据作为输入数据集,以一台YE2-100L1-4型异步电机为实验对象进行实验验证。研究结果表明:相比于小波变换及快速傅里叶变换,采用d-q变换能更准确的提取出定子电流中的故障特征,更精确地反映电机故障状态,有助于提高故障分类准确率;相比于传统的LSTM算法,经WOA优化后的LSTM算法分类准确率可达98.3%,能可靠地实现不同程度匝间短路故障的诊断。 展开更多
关键词 异步电机 故障诊断 定子绕组匝间短路 d-q变换理论 鲸鱼优化算法 长短期记忆神经网络
下载PDF
基于二维CNN与多源机电信息融合的同步电机转子匝间短路故障诊断方法 被引量:1
17
作者 马明晗 侯岳佳 +3 位作者 李永刚 贺鹏康 齐鹏 武玉才 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第2期123-134,I0011,共13页
为提高同步电机转子绕组匝间短路故障的诊断准确率,以一台型号为SDF-9的一对极同步发电机为研究对象,提出了一种基于二维卷积神经网络(Convolutional Neural Networks, CNN)与多源机电信息融合的匝间短路故障诊断方法。首先选取故障前... 为提高同步电机转子绕组匝间短路故障的诊断准确率,以一台型号为SDF-9的一对极同步发电机为研究对象,提出了一种基于二维卷积神经网络(Convolutional Neural Networks, CNN)与多源机电信息融合的匝间短路故障诊断方法。首先选取故障前后的定子环流、转子振动、定子振动信号为故障特征,采用信号-图像转换方法将一维时序信号转化为二维灰度图像。其次将处理后的图像分别作为二维CNN模型的前置输入进行训练。最后采用D-S证据理论将3种证据体的输出概率进行决策融合。结果表明:该方法消除了单一信号易受传感器故障及环境变化的影响,故障诊断准确率显著提高,并与其他传统故障诊断算法的诊断结果进行对比分析,验证了此方法的有效性。 展开更多
关键词 同步电机 转子绕组匝间短路故障 D-S证据组合 故障诊断 卷积神经网络
下载PDF
基于卷积神经网络的牵引电机定子绕组匝间短路故障诊断 被引量:1
18
作者 张宝杰 麻宸伟 +3 位作者 贾震 江周余 卢腾 宋文胜 《铁道学报》 EI CAS CSCD 北大核心 2024年第4期73-79,共7页
为实现牵引电机定子绕组匝间短路故障诊断,提出一种基于一维卷积神经网络(one-dimensional convolutional neural network, 1D-CNN)的故障诊断方法。首先对电机健康状态、不同相发生匝间短路故障及不同故障严重程度下的定子电流进行三... 为实现牵引电机定子绕组匝间短路故障诊断,提出一种基于一维卷积神经网络(one-dimensional convolutional neural network, 1D-CNN)的故障诊断方法。首先对电机健康状态、不同相发生匝间短路故障及不同故障严重程度下的定子电流进行三层小波分解,得到小波分解高频系数和低频系数;求取小波分解系数的二范数,作为电机电流的特征;设计并训练1D-CNN,将训练好的1D-CNN作为分类器,实现牵引电机定子绕组匝间短路故障“端到端”的智能诊断。设计并搭建异步电机定子绕组匝间短路故障诊断实验平台。实验结果表明:所提方法可以准确有效诊断出轻微的匝间短路故障。在闭环控制下,电机发生1匝短路故障时,诊断正确率达到90.5%,并能够有效区分故障相。 展开更多
关键词 牵引电机 匝间短路 故障诊断 小波分解 卷积神经网络
下载PDF
一种基于电机电流的高压断路器与负荷开关弹簧操作机构故障诊断算法 被引量:1
19
作者 王佳灿 何志鹏 +2 位作者 冀一玮 赵莉华 吴月峥 《高压电器》 CAS CSCD 北大核心 2024年第5期39-45,共7页
为实现高压断路器与负荷开关的故障诊断,提高设备安全可靠性,有必要深入研究电机电流特性与高压断路器、负荷开关的弹簧操作机构状态之间的关系。由于传统BP神经网络存在易陷入局部最小点及网络收敛速度慢等缺陷,采用遗传算法对于BP神... 为实现高压断路器与负荷开关的故障诊断,提高设备安全可靠性,有必要深入研究电机电流特性与高压断路器、负荷开关的弹簧操作机构状态之间的关系。由于传统BP神经网络存在易陷入局部最小点及网络收敛速度慢等缺陷,采用遗传算法对于BP神经网络进行优化可以提高判断准确率及诊断效率。诊断结果表明,GA-BP算法可以根据断路器、负荷开关电机电流数据快速准确判断设备所处的运行状态,且精确度高,对于工程实际具有广泛应用前景。 展开更多
关键词 负荷开关 高压断路器 电机电流 遗传算法 BP神经网络 故障诊断
下载PDF
A Neural Network Appraoch to Fault Diagnosis in Analog Circuits
20
作者 尉乃红 杨士元 童诗白 《Journal of Computer Science & Technology》 SCIE EI CSCD 1996年第6期542-550,共9页
This paper presents a neural network based fault diagnosis approach for analog circuits, taking the tolerances of circuit elements into account. Specifi-cally, a normalization rule of input information, a pseudo-fault... This paper presents a neural network based fault diagnosis approach for analog circuits, taking the tolerances of circuit elements into account. Specifi-cally, a normalization rule of input information, a pseudo-fault domain border (PFDB) pattern selection method and a new output error function are proposed for training the backpropagation (BP) network to be a fault diagnoser. Experi-mental results demonstrate that the diagnoser performs as well as or better than any classical approaches in terms of accuracy, and provides at Ieast an order-of magnitude improvement in post-fault diagnostic speed. 展开更多
关键词 fault diagnosis neural network analog circuit classification tolerance
原文传递
上一页 1 2 41 下一页 到第
使用帮助 返回顶部