There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model f or ...There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model f or fault diagnosis of the refrigeration system of an intelligent building facility, gave the networks parameters, and analyzed the reasoning mechanism. Based on the model, some data was analyzed and diagnosed by adopting Bayesian networks reasoning platform GeNIe. The result shows that the diagnosis effect is more comprehensive and reasonable than the other method.展开更多
Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However a...Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However almost all existing probing-based techniques face the following problems: 1) performing inaccurately in noisy networks; 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm performs much faster than BPEA does without sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks.展开更多
A Bayesian Network is a reasoning tool based on probability theory and has many advantages that other reasoning tools do not have. This paper discusses the basic theory of Bayesian networks and studies the problems in...A Bayesian Network is a reasoning tool based on probability theory and has many advantages that other reasoning tools do not have. This paper discusses the basic theory of Bayesian networks and studies the problems in constructing Bayesian networks. The paper also constructs a Bayesian diagnosis network of a reciprocating compressor. The example helps us to draw a conclusion that Bayesian diagnosis networks can diagnose reciprocating machinery effectively.展开更多
Based on Bayesian network, a new method to diagnose satellite faults is presented. The Bayesian network model of physical processing of satellite is developed; the main ideas of Bayesian network model of satellite fau...Based on Bayesian network, a new method to diagnose satellite faults is presented. The Bayesian network model of physical processing of satellite is developed; the main ideas of Bayesian network model of satellite fault diagnosis are introduced; the method to make the symptom variables values into discrete forms is proposed; one example is given to illustrate the application of Bayesian network model for satellite fault diagnosis.展开更多
The maintenance process has undergone several major developments that have led to proactive considerations and the transformation fiom the traditional "fail and fix" practice into the "predict and prevent" proacti...The maintenance process has undergone several major developments that have led to proactive considerations and the transformation fiom the traditional "fail and fix" practice into the "predict and prevent" proactive maintenance methodology. The anticipation action, which characterizes this proactive maintenance strategy is mainly based on monitoring, diagnosis, prognosis and decision-making modules. Oil monitoring is a key component of a successful condition monitoring program. It can be used as a proactive tool to identify the wear modes of rubbing pans and diagnoses the faults in machinery. But diagnosis relying on oil analysis technology must deal with uncertain knowledge and fuzzy input data. Besides other methods, Bayesian Networks have been extensively applied to fault diagnosis with the advantages of uncertainty inference; however, in the area of oil monitoring, it is a new field. This paper presents an integrated Bayesian network based decision support for maintenance of diesel engines.展开更多
With increasing deployment of Web services, the research on the dependability and availability of Web service composition becomes more and more active. Since unexpected faults of Web service composition may occur in d...With increasing deployment of Web services, the research on the dependability and availability of Web service composition becomes more and more active. Since unexpected faults of Web service composition may occur in different levels at runtime, log analysis as a typical data- driven approach for fault diagnosis is more applicable and scalable in various architectures. Considering the trend that more and more service logs are represented using XML or JSON format which has good flexibility and interoperability, fault classification problem of semi-structured logs is considered as a challenging issue in this area. However, most existing approaches focus on the log content analysis but ignore the structural information and lead to poor performance. To improve the accuracy of fault classification, we exploit structural similarity of log files and propose a similarity based Bayesian learning approach for semi-structured logs in this paper. Our solution estimates degrees of similarity among structural elements from heterogeneous log data, constructs combined Bayesian network (CBN), uses similarity based learning algorithm to compute probabilities in CBN, and classifies test log data into most probable fault categories based on the generated CBN. Experimental results show that our approach outperforms other learning approaches on structural log datasets.展开更多
Complex environment stresses bring many uncertainties to transformer fault. The Bayesian network(BN) can represent prior knowledge in the form of probability which makes it an effective tool to deal with the uncertain...Complex environment stresses bring many uncertainties to transformer fault. The Bayesian network(BN) can represent prior knowledge in the form of probability which makes it an effective tool to deal with the uncertain problems. This paper established a BN model for the transformer fault diagnosis with practical operation dataset and expert knowledge. Then importance measures are introduced to indentify the key attributes which affect the results of transformer diagnosis most. Moreover, a strategy was proposed to reduce the number of attribute in transformer fault detection and the resource cost was saved. At last, a diagnosis case of practical transformer was implemented to verify the effectiveness of this method.展开更多
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d...For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.展开更多
姿态控制系统是卫星系统中重要的组成部分,由于其高昂的造价,发生故障会引发恶劣的影响。随着航天科技的发展,卫星姿态控制系统也逐渐复杂,其可能发生故障的概率也随之增大。针对传统神经网络故障诊断结果缺少置信度、鲁棒性较差以及易...姿态控制系统是卫星系统中重要的组成部分,由于其高昂的造价,发生故障会引发恶劣的影响。随着航天科技的发展,卫星姿态控制系统也逐渐复杂,其可能发生故障的概率也随之增大。针对传统神经网络故障诊断结果缺少置信度、鲁棒性较差以及易发生过拟合的缺点,在对贝叶斯统计和深度学习理论研究的基础上,提出了一种基于贝叶斯线性层与贝叶斯卷积层的Bayesian Le Net结合的网络模型。通过对卫星姿态控制系统飞轮部件的故障数据分析和处理,进而采用该模型对故障仿真,并与贝叶斯全连接神经网络与传统Le Net进行对比,实验结果表明:在飞轮可能发生的三种故障前提下,上述网络模型准确率较高,过拟合现象较轻。验证了上述网络模型的有效性。展开更多
Large-scale complex systems have the feature of including large amount of variables that have complex relationships, for which signed directed graph (SDG) model could serve as a significant tool by describing the ca...Large-scale complex systems have the feature of including large amount of variables that have complex relationships, for which signed directed graph (SDG) model could serve as a significant tool by describing the causal relationships among variables. Although qualitative SDG expresses the causing effects between variables easily and clearly, it has many disadvantages or limitations. Probabilistic SDG proposed in the article describes deliver relationships among faults and variables by conditional probabilities, which contains more information and performs more applicability. The article introduces the concepts and con- struction approaches of probabilistic SDG, and presents the inference approaches aiming at fault diagnosis in this framework, i.e. Bayesian inference with graph elimination or junction tree algorithms to compute fault probabilities. Finally, the probabilistic SDG of a typical example of 65t/h boiler system is given.展开更多
基金This paper is supported by National Natural Science Foundation of China under Grant No.10372084
文摘There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model f or fault diagnosis of the refrigeration system of an intelligent building facility, gave the networks parameters, and analyzed the reasoning mechanism. Based on the model, some data was analyzed and diagnosed by adopting Bayesian networks reasoning platform GeNIe. The result shows that the diagnosis effect is more comprehensive and reasonable than the other method.
基金supported by National Key Basic Research Program of China (973 program) under Grant No.2007CB310703Funds for Creative Research Groups of China under Grant No.60821001+1 种基金National Natural Science Foundation of China under Grant No. 60973108National S&T Major Project under Grant No.2011ZX03005-004-02
文摘Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However almost all existing probing-based techniques face the following problems: 1) performing inaccurately in noisy networks; 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm performs much faster than BPEA does without sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks.
文摘A Bayesian Network is a reasoning tool based on probability theory and has many advantages that other reasoning tools do not have. This paper discusses the basic theory of Bayesian networks and studies the problems in constructing Bayesian networks. The paper also constructs a Bayesian diagnosis network of a reciprocating compressor. The example helps us to draw a conclusion that Bayesian diagnosis networks can diagnose reciprocating machinery effectively.
文摘Based on Bayesian network, a new method to diagnose satellite faults is presented. The Bayesian network model of physical processing of satellite is developed; the main ideas of Bayesian network model of satellite fault diagnosis are introduced; the method to make the symptom variables values into discrete forms is proposed; one example is given to illustrate the application of Bayesian network model for satellite fault diagnosis.
文摘The maintenance process has undergone several major developments that have led to proactive considerations and the transformation fiom the traditional "fail and fix" practice into the "predict and prevent" proactive maintenance methodology. The anticipation action, which characterizes this proactive maintenance strategy is mainly based on monitoring, diagnosis, prognosis and decision-making modules. Oil monitoring is a key component of a successful condition monitoring program. It can be used as a proactive tool to identify the wear modes of rubbing pans and diagnoses the faults in machinery. But diagnosis relying on oil analysis technology must deal with uncertain knowledge and fuzzy input data. Besides other methods, Bayesian Networks have been extensively applied to fault diagnosis with the advantages of uncertainty inference; however, in the area of oil monitoring, it is a new field. This paper presents an integrated Bayesian network based decision support for maintenance of diesel engines.
基金This work is partially supported by National Basic Research Priorities Programme (No. 2013CB329502), Na-tional Natural Science Foundation of China (No. 61472468, 61502115), General Research Fund of Hong Kong (No. 417112), and Fundamental Research Funds for the Central Universities (No. 3262014T75, 3262015T20, 3262015T70, 3262016T31).
文摘With increasing deployment of Web services, the research on the dependability and availability of Web service composition becomes more and more active. Since unexpected faults of Web service composition may occur in different levels at runtime, log analysis as a typical data- driven approach for fault diagnosis is more applicable and scalable in various architectures. Considering the trend that more and more service logs are represented using XML or JSON format which has good flexibility and interoperability, fault classification problem of semi-structured logs is considered as a challenging issue in this area. However, most existing approaches focus on the log content analysis but ignore the structural information and lead to poor performance. To improve the accuracy of fault classification, we exploit structural similarity of log files and propose a similarity based Bayesian learning approach for semi-structured logs in this paper. Our solution estimates degrees of similarity among structural elements from heterogeneous log data, constructs combined Bayesian network (CBN), uses similarity based learning algorithm to compute probabilities in CBN, and classifies test log data into most probable fault categories based on the generated CBN. Experimental results show that our approach outperforms other learning approaches on structural log datasets.
基金the National Natural Science Foundation of China(Nos.71271170 and 71471147)the Program for New Century Excellent Talents in University(No.NCET-13-0475)the China Aeronautical Science Foundation(No.2014ZG53080)
文摘Complex environment stresses bring many uncertainties to transformer fault. The Bayesian network(BN) can represent prior knowledge in the form of probability which makes it an effective tool to deal with the uncertain problems. This paper established a BN model for the transformer fault diagnosis with practical operation dataset and expert knowledge. Then importance measures are introduced to indentify the key attributes which affect the results of transformer diagnosis most. Moreover, a strategy was proposed to reduce the number of attribute in transformer fault detection and the resource cost was saved. At last, a diagnosis case of practical transformer was implemented to verify the effectiveness of this method.
基金supported by the National Natural Science Foundation of China(61202473)the Fundamental Research Funds for Central Universities(JUSRP111A49)+1 种基金"111 Project"(B12018)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.
文摘姿态控制系统是卫星系统中重要的组成部分,由于其高昂的造价,发生故障会引发恶劣的影响。随着航天科技的发展,卫星姿态控制系统也逐渐复杂,其可能发生故障的概率也随之增大。针对传统神经网络故障诊断结果缺少置信度、鲁棒性较差以及易发生过拟合的缺点,在对贝叶斯统计和深度学习理论研究的基础上,提出了一种基于贝叶斯线性层与贝叶斯卷积层的Bayesian Le Net结合的网络模型。通过对卫星姿态控制系统飞轮部件的故障数据分析和处理,进而采用该模型对故障仿真,并与贝叶斯全连接神经网络与传统Le Net进行对比,实验结果表明:在飞轮可能发生的三种故障前提下,上述网络模型准确率较高,过拟合现象较轻。验证了上述网络模型的有效性。
文摘Large-scale complex systems have the feature of including large amount of variables that have complex relationships, for which signed directed graph (SDG) model could serve as a significant tool by describing the causal relationships among variables. Although qualitative SDG expresses the causing effects between variables easily and clearly, it has many disadvantages or limitations. Probabilistic SDG proposed in the article describes deliver relationships among faults and variables by conditional probabilities, which contains more information and performs more applicability. The article introduces the concepts and con- struction approaches of probabilistic SDG, and presents the inference approaches aiming at fault diagnosis in this framework, i.e. Bayesian inference with graph elimination or junction tree algorithms to compute fault probabilities. Finally, the probabilistic SDG of a typical example of 65t/h boiler system is given.