In this paper, the author develops some principles to structure a fault dictionary. The concept of a “standard fault dictionary” is raised and a framework for a fuzzy dictionary is given. Fault diagnosis aide by a f...In this paper, the author develops some principles to structure a fault dictionary. The concept of a “standard fault dictionary” is raised and a framework for a fuzzy dictionary is given. Fault diagnosis aide by a fuzzy fault dictionary is also introduced.展开更多
In this paper, it is proved that the direction of the node-voltage difference vector, which is the difference between the node-voltage vector at faulty state and the one at the nominal state, is determined only by the...In this paper, it is proved that the direction of the node-voltage difference vector, which is the difference between the node-voltage vector at faulty state and the one at the nominal state, is determined only by the location of the faulty clement in linear analog circuits. Considering that the direction of the node-voltage sensitivity vector is the same as the one of the node-voltage difference vector and also considering that the module of the node-voltage sensitivity vector presents the weight of the parameter of faulty element deviation relative to the voltage difference, fault dictionary is set up based on node-voltage sensitivity vectors. A decision algorithm is proposed concerned with both the location and the parameter difference of the faulty element. Single fault and multi-fault can be diagnosed while the circuit parameters deviate within the tolerance range of 10 %.展开更多
Increasing IC densities necessitate diagnosis methodologies with enhanceddefect locating capabilities. Yet the computational effort expended in extracting diagnosticinformation and the stringent storage requirements c...Increasing IC densities necessitate diagnosis methodologies with enhanceddefect locating capabilities. Yet the computational effort expended in extracting diagnosticinformation and the stringent storage requirements constitute major concerns due to the tremendousnumber of faults in typical ICs. In this paper, we propose an RT-level diagnosis methodology capableof responding to these challenges. In the proposed scheme, diagnostic information is computed on agrouped fault effect basis, enhancing both the storage and the computational aspects. The faulteffect grouping criteria are identified based on a module structure analysis, improving thepropagation ability of the diagnostic information through RT modules. Experimental results show thatthe proposed methodology provides superior speed-ups and significant diagnostic informationcompression at no sacrifice in diagnostic resolution, compared to the existing gate-level diagnosisapproaches.展开更多
文摘In this paper, the author develops some principles to structure a fault dictionary. The concept of a “standard fault dictionary” is raised and a framework for a fuzzy dictionary is given. Fault diagnosis aide by a fuzzy fault dictionary is also introduced.
基金supported by Program for New Century Excellent Talents in University under Grant No.NCET-05-0804
文摘In this paper, it is proved that the direction of the node-voltage difference vector, which is the difference between the node-voltage vector at faulty state and the one at the nominal state, is determined only by the location of the faulty clement in linear analog circuits. Considering that the direction of the node-voltage sensitivity vector is the same as the one of the node-voltage difference vector and also considering that the module of the node-voltage sensitivity vector presents the weight of the parameter of faulty element deviation relative to the voltage difference, fault dictionary is set up based on node-voltage sensitivity vectors. A decision algorithm is proposed concerned with both the location and the parameter difference of the faulty element. Single fault and multi-fault can be diagnosed while the circuit parameters deviate within the tolerance range of 10 %.
文摘Increasing IC densities necessitate diagnosis methodologies with enhanceddefect locating capabilities. Yet the computational effort expended in extracting diagnosticinformation and the stringent storage requirements constitute major concerns due to the tremendousnumber of faults in typical ICs. In this paper, we propose an RT-level diagnosis methodology capableof responding to these challenges. In the proposed scheme, diagnostic information is computed on agrouped fault effect basis, enhancing both the storage and the computational aspects. The faulteffect grouping criteria are identified based on a module structure analysis, improving thepropagation ability of the diagnostic information through RT modules. Experimental results show thatthe proposed methodology provides superior speed-ups and significant diagnostic informationcompression at no sacrifice in diagnostic resolution, compared to the existing gate-level diagnosisapproaches.