期刊文献+
共找到134,679篇文章
< 1 2 250 >
每页显示 20 50 100
A new early-warning prediction system for monitoring shear force of fault plane in the active fault 被引量:2
1
作者 Manchao He Yu Wang Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第3期223-231,共9页
The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not suc... The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms. 展开更多
关键词 active faults monitoring EARTHQUAKE early-warning system shear strength
下载PDF
Engine Misfire Fault Detection Based on the Channel Attention Convolutional Model
2
作者 Feifei Yu Yongxian Huang +3 位作者 Guoyan Chen Xiaoqing Yang Canyi Du Yongkang Gong 《Computers, Materials & Continua》 SCIE EI 2025年第1期843-862,共20页
To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precis... To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types. 展开更多
关键词 Channel attention SENET model engine misfire fault fault detection
下载PDF
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis
3
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
下载PDF
A Latency-Aware and Fault-Tolerant Framework for Resource Scheduling and Data Management in Fog-Enabled Smart City Transportation Systems
4
作者 Ibrar Afzal Noor ul Amin +1 位作者 Zulfiqar Ahmad Abdulmohsen Algarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期1377-1399,共23页
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ... Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem. 展开更多
关键词 Fog computing smart cities smart transportation data management fault tolerance resource scheduling
下载PDF
Integrated Equipment with Functions of Current Flow Control and Fault Isolation for Multiterminal DC Grids
5
作者 Shuo Zhang Guibin Zou 《Energy Engineering》 EI 2025年第1期85-99,共15页
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ... The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract. 展开更多
关键词 Integrated equipment multiterminal direct current grid current flow control fault isolation
下载PDF
Construction of Early-warning Model for Plant Diseases and Pests Based on Improved Neural Network 被引量:2
6
作者 曹志勇 邱靖 +1 位作者 曹志娟 杨毅 《Agricultural Science & Technology》 CAS 2009年第6期135-137,154,共4页
By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ... By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform. 展开更多
关键词 Backward propagation neural network Particle swarm algorithm Plant diseases and pests early-warning model
下载PDF
Deformation early-warning index for heightened gravity dam during impoundment period 被引量:11
7
作者 Bo Chen Zi-shen Huang +1 位作者 Teng-fei Bao Zheng Zhu 《Water Science and Engineering》 EI CAS CSCD 2021年第1期54-64,共11页
The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,par... The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,particularly of heightened projects in the impoundment period.Herein,a new method for monitoring the safety status of heightened dams is proposed based on the deformation monitoring data of a dam structure,a statistical model,and finite-element numerical simulation.First,a fast optimization inversion method for estimation of dam mechanical parameters was developed,which used the water pressure component extracted from a statistical model,an improved inversion objective function,and a genetic optimization iterative algorithm.Then,a finite element model of a heightened concrete gravity dam was established,and the deformation behavior of the dam with rising water levels in the impoundment period was simulated.Subsequently,mechanical parameters of aged dam parts were calculated using the fast optimization inversion method with simulated deformation and the water pressure deformation component obtained by the statistical model under the same conditions of water pressure change.Finally,a new earlywarning index of dam deformation was constructed by means of the forward-simulated deformation and other components of the statistical model.The early-warning index is useful for forecasting dam deformation under different water levels,especially high water levels. 展开更多
关键词 Concrete gravity dam Parameter inverse analysis Structural health monitoring early-warning index Finite element simulation
下载PDF
China agricultural outlook for 2015–2024 based on China Agricultural Monitoring and Early-warning System(CAMES) 被引量:12
8
作者 XU Shi-wei LI Gan-qiong LI Zhe-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第9期1889-1902,共14页
The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as ... The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as agricultural outlook must be strengthened. In this study, we develop the China Agricultural Monitoring and Early-warning System (CAMES) on the basis of a comparative study of domestic and international agricultural outlook models. The system is a dynamic and multi-market partial equilibrium model that integrates biological mechanisms with economic mechanisms. This system, which includes 11 categories of 953 kinds of agricultural products, could dynamical y project agricultural market supply and demand, assess food security, and conduct scenario analysis at different spatial levels, time scale levels, and macro-micro levels. Based on the CAMES, the production, consumption, and trade of the major agricultural products in China over the next decade are projected. The fol owing conclusions are drawn:i) The production of major agricultural products wil continue to grow steadily, mainly because of the increase in yield. i ) The growth of agricultural consumption wil be slightly higher than that of agricultural production. Meanwhile, a high self-sufifciency rate is expected for cereals such as rice, wheat, and maize, with the rate being stable at around 97%. i i) Agricultural trade wil continue to thrive. The growth of soybean and milk im-ports wil slow down, but the growth of traditional agricultural exports such as vegetables and fruits is expected to continue. 展开更多
关键词 agricultural outlook PROJECTION China Agricultural Monitoring and early-warning System(CAMES) agriculture of China
下载PDF
Data Processing Model of Coalmine Gas Early-Warning System 被引量:8
9
作者 QIAN Jian-sheng YIN Hong-sheng +2 位作者 LIU Xiu-rong HUA Gang XU Yong-gang 《Journal of China University of Mining and Technology》 EI 2007年第1期20-24,共5页
The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so t... The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority. 展开更多
关键词 gas early-warning data processing queuing theory priority model high efficiency
下载PDF
Characteristics Analysis and the Early-warning Service System of Heavy Fog in Chizhou City 被引量:5
10
作者 齐建华 杨春雷 +2 位作者 阮玲 张仕清 房厚林 《Meteorological and Environmental Research》 CAS 2010年第5期71-75,79,共6页
By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the tem... By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the temperature,humidity,wind direction,wind speed,air pressure and so on.The conceptual models of high-altitude and ground situation were established when the heavy fog happened in Chizhou City.Based on considering sufficiently the special geographical environment in Chizhou City,we found the key factors which affected the local heavy fog via the relative analyses.By using the statistical forecast methods which included the second-level judgment method and regression method of event probability and so on,the forecast mode equation of heavy fog was established.Moreover,the objective forecast system of heavy fog in Chizhou City was also manufactured.It provided the basis and platform which could be referred for the heavy fog forecast,service and the release of early-warning signal. 展开更多
关键词 Heavy fog Climate characteristic Forecast method early-warning system China
下载PDF
Risk Early-Warning Method for Natural Disasters Based on Integration of Entropy and DEA Model 被引量:4
11
作者 Fengshan Wang Yan Cao Meng Liu 《Applied Mathematics》 2011年第1期23-32,共10页
Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural ... Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural disasters were differentiated into essential attributes and external characters, and its workflow mode was established on risk early-warning structure with integrated Entropy and DEA model, whose steps were put forward. On the basis of standard risk early-warning DEA model of natural disasters, weight coefficient of risk early-warning factors was determined with Information Entropy method, which improved standard risk early-warning DEA model with non-Archimedean infinitesimal, and established risk early-warning preference DEA model based on integrated entropy weight and DEA Model. Finally, model was applied into landslide risk early-warning case in earthquake-damaged emergency process on slope engineering, which exemplified the outcome could reflect more risk information than the method of standard DEA model, and reflected the rationality, feasibility, and impersonality, revealing its better ability on comprehensive safety and structure risk. 展开更多
关键词 ENTROPY Data Envelopment Analysis Comprehensive INTEGRATION ESSENTIAL ATTRIBUTE Risk early-warning Natural DISASTER
下载PDF
The Innovation Research of Financial Early-Warning Index Measurement 被引量:3
12
作者 Zhang You-tang Cheng Jun-ning Liang Wei-jun 《Wuhan University Journal of Natural Sciences》 CAS 2002年第3期281-284,共4页
The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure ... The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure the warning condition that the enterprise faces and take the effective measures to eliminate. We criticize Altman’sZ calculating model and build up some new indexes for enterprise financial early-warning condition measuring and making sound decision. 展开更多
关键词 financial early-warning index critical value cash earning value cash added value
下载PDF
Early-warning signals for an outbreak of the influenza pandemic 被引量:2
13
作者 任迪 高洁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期461-464,共4页
Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been ... Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been performed over the years on the biological properties, chemical characteristics, external environmental factors and other aspects of the virus, and some results have been achieved. Based on the chaos game representation walk model, this paper uses the time series analysis method to study the DNA sequences of the influenza virus from 1913 to 2010, and works out the early-warning signals indicator value for the outbreak of an influenza pandemic. The variances in the CCR wall〈 sequences for the pandemic years (or + -1 to 2 years) are significantly higher than those for the adjacent years, while those in the non-pandemic years are usually smaller. In this way we can provide an influenza early-warning mechanism so that people can take precautions and be well prepared prior to a pandemic. 展开更多
关键词 influenza virus early-warning signals chaos game representation (CGR) walk model DNA sequence
下载PDF
A study on the early-warning technique concerning debris flow disasters 被引量:1
14
作者 ZHOU Jinxing, WANG Lixian, XIE Baoyuan, FEI Shimin, WANG Xilin (1. Inst. of Forestry Research, Chinese Academy of Forestry Science, Beijing 100091, China 2. College of Resource & Environment, Beijing Forestry University, Beijing 100083, China) 《Journal of Geographical Sciences》 SCIE CSCD 2002年第3期363-370,共8页
According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destru... According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN) real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system’s performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent type and hazardous zone, the torrent management, the early-warning of disasters and the disaster reduction and prevention. 展开更多
关键词 debris flows disaster early-warning technique torrent classification mapping of the hazard zones
下载PDF
The Management Platform for Online Rate of Meteorological Early-warning Loudspeakers 被引量:1
15
作者 Bing SHAO Baolei DONG Jifeng SONG 《Asian Agricultural Research》 2017年第2期57-58,共2页
The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that ... The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that it can promptly deliver the early-warning information concerning some meteorological disasters(such as torrential rains,typhoons,cold wave,hail)to the areas affected,so as to provide reference and protection for agricultural production and effectively reduce the loss of agricultural producers.Up to now,the meteorological early-warning loudspeakers in Benxi have covered the villages.However,due to irregular occurrence of meteorological disasters,the listeners will turn off the information receivers of meteorological early-warning loudspeakers when they fail to receive meteorological information for a long time,so that the users can not promptly know the early-warning information regarding some sudden meteorological disasters.In view of this,the meteorological departments have introduced a series of management measures,such as the daily use of loudspeakers to publish weather forecast information,aimed at improving the online rate and usage rate of meteorological loudspeakers.And the management platform for online rate of meteorological early-warning loudspeakers is an important part of the management system. 展开更多
关键词 Meteorological early-warning loudspeakers Weather LAN Storing process SMS
下载PDF
基于AHRFaultSegNet深度学习网络的地震数据断层自动识别
16
作者 李克文 李文韬 +2 位作者 窦一民 朱信源 阳致煊 《石油地球物理勘探》 EI CSCD 北大核心 2024年第6期1225-1234,共10页
断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基... 断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基础上,构建了一种基于解耦自注意力机制的高分辨率断层识别网络模型AHRFaultSegNet。对于自注意力机制解耦,结合空间注意力和通道注意力,代替HRNet中并行传播的卷积层,在减少传统自注意力机制计算量的同时,模型可以在全局范围内计算输入特征的相关性,更准确地建模非局部特征;对解耦自注意力使用残差连接来保留原始特征,在加速模型训练的同时,使模型能够更好地保持细节信息。实验结果表明,所提出的网络模型在Dice、Fmeasure、IoU、Precision、Recall等性能评价指标上均优于其他常见的断层自动识别网络模型。通过对合成地震数据与实际地震数据等进行测试,证明了该方法对断层细微结构具有良好的识别效果并且具有良好的抗噪能力。 展开更多
关键词 断层检测识别 深度学习 解耦自注意力机制 残差连接
下载PDF
Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes 被引量:1
17
作者 Shutian Cao Fengshou Zhang +4 位作者 Mengke An Derek Elsworth Manchao He Hai Liu Luanxiao Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1273-1282,共10页
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear... Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults. 展开更多
关键词 fault stability Basaltic fault Temperature elevation Obsidian content Shallow moonquakes
下载PDF
Novel Early-Warning Model for Customer Churn of Credit Card Based on GSAIBAS-Cat Boost
18
作者 Yaling Xu Congjun Rao +1 位作者 Xinping Xiao Fuyan Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2715-2742,共28页
As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their cu... As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their customer resources,it is crucial for banks to accurately predict customers with a tendency to churn.Aiming at the typical binary classification problem like customer churn,this paper establishes an early-warning model for credit card customer churn.That is a dual search algorithm named GSAIBAS by incorporating Golden Sine Algorithm(GSA)and an Improved Beetle Antennae Search(IBAS)is proposed to optimize the parameters of the CatBoost algorithm,which forms the GSAIBAS-CatBoost model.Especially,considering that the BAS algorithm has simple parameters and is easy to fall into local optimum,the Sigmoid nonlinear convergence factor and the lane flight equation are introduced to adjust the fixed step size of beetle.Then this improved BAS algorithm with variable step size is fused with the GSA to form a GSAIBAS algorithm which can achieve dual optimization.Moreover,an empirical analysis is made according to the data set of credit card customers from Analyttica official platform.The empirical results show that the values of Area Under Curve(AUC)and recall of the proposedmodel in this paper reach 96.15%and 95.56%,respectively,which are significantly better than the other 9 common machine learning models.Compared with several existing optimization algorithms,GSAIBAS algorithm has higher precision in the parameter optimization for CatBoost.Combined with two other customer churn data sets on Kaggle data platform,it is further verified that the model proposed in this paper is also valid and feasible. 展开更多
关键词 Customer churn early-warning model IBAS GSAIBAS-CatBoost
下载PDF
Characterization and spatial analysis of coseismic landslides triggered by the Luding Ms 6.8 earthquake in the Xianshuihe fault zone, Southwest China 被引量:1
19
作者 GUO Changbao LI Caihong +10 位作者 YANG Zhihua NI Jiawei ZHONG Ning WANG Meng YAN Yiqiu SONG Deguang ZHANG Yanan ZHANG Xianbing WU Ruian CAO Shichao SHAO Weiwei 《Journal of Mountain Science》 SCIE CSCD 2024年第1期160-181,共22页
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ... On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area. 展开更多
关键词 Luding earthquake Coseismic landslides Remote sensing interpretation Spatial distribution Xianshuihe fault Earthquake fault
下载PDF
Dynamic Vision Enabled Contactless Cross-Domain Machine Fault Diagnosis With Neuromorphic Computing 被引量:1
20
作者 Xinrui Chen Xiang Li +3 位作者 Shupeng Yu Yaguo Lei Naipeng Li Bin Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期788-790,共3页
Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in ... Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision. 展开更多
关键词 fault LESS DIAGNOSIS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部