The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not suc...The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.展开更多
To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precis...To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types.展开更多
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine...Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment.展开更多
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.展开更多
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ...The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.展开更多
By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ...By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform.展开更多
The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,par...The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,particularly of heightened projects in the impoundment period.Herein,a new method for monitoring the safety status of heightened dams is proposed based on the deformation monitoring data of a dam structure,a statistical model,and finite-element numerical simulation.First,a fast optimization inversion method for estimation of dam mechanical parameters was developed,which used the water pressure component extracted from a statistical model,an improved inversion objective function,and a genetic optimization iterative algorithm.Then,a finite element model of a heightened concrete gravity dam was established,and the deformation behavior of the dam with rising water levels in the impoundment period was simulated.Subsequently,mechanical parameters of aged dam parts were calculated using the fast optimization inversion method with simulated deformation and the water pressure deformation component obtained by the statistical model under the same conditions of water pressure change.Finally,a new earlywarning index of dam deformation was constructed by means of the forward-simulated deformation and other components of the statistical model.The early-warning index is useful for forecasting dam deformation under different water levels,especially high water levels.展开更多
The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as ...The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as agricultural outlook must be strengthened. In this study, we develop the China Agricultural Monitoring and Early-warning System (CAMES) on the basis of a comparative study of domestic and international agricultural outlook models. The system is a dynamic and multi-market partial equilibrium model that integrates biological mechanisms with economic mechanisms. This system, which includes 11 categories of 953 kinds of agricultural products, could dynamical y project agricultural market supply and demand, assess food security, and conduct scenario analysis at different spatial levels, time scale levels, and macro-micro levels. Based on the CAMES, the production, consumption, and trade of the major agricultural products in China over the next decade are projected. The fol owing conclusions are drawn:i) The production of major agricultural products wil continue to grow steadily, mainly because of the increase in yield. i ) The growth of agricultural consumption wil be slightly higher than that of agricultural production. Meanwhile, a high self-sufifciency rate is expected for cereals such as rice, wheat, and maize, with the rate being stable at around 97%. i i) Agricultural trade wil continue to thrive. The growth of soybean and milk im-ports wil slow down, but the growth of traditional agricultural exports such as vegetables and fruits is expected to continue.展开更多
The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so t...The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.展开更多
By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the tem...By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the temperature,humidity,wind direction,wind speed,air pressure and so on.The conceptual models of high-altitude and ground situation were established when the heavy fog happened in Chizhou City.Based on considering sufficiently the special geographical environment in Chizhou City,we found the key factors which affected the local heavy fog via the relative analyses.By using the statistical forecast methods which included the second-level judgment method and regression method of event probability and so on,the forecast mode equation of heavy fog was established.Moreover,the objective forecast system of heavy fog in Chizhou City was also manufactured.It provided the basis and platform which could be referred for the heavy fog forecast,service and the release of early-warning signal.展开更多
Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural ...Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural disasters were differentiated into essential attributes and external characters, and its workflow mode was established on risk early-warning structure with integrated Entropy and DEA model, whose steps were put forward. On the basis of standard risk early-warning DEA model of natural disasters, weight coefficient of risk early-warning factors was determined with Information Entropy method, which improved standard risk early-warning DEA model with non-Archimedean infinitesimal, and established risk early-warning preference DEA model based on integrated entropy weight and DEA Model. Finally, model was applied into landslide risk early-warning case in earthquake-damaged emergency process on slope engineering, which exemplified the outcome could reflect more risk information than the method of standard DEA model, and reflected the rationality, feasibility, and impersonality, revealing its better ability on comprehensive safety and structure risk.展开更多
The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure ...The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure the warning condition that the enterprise faces and take the effective measures to eliminate. We criticize Altman’sZ calculating model and build up some new indexes for enterprise financial early-warning condition measuring and making sound decision.展开更多
Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been ...Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been performed over the years on the biological properties, chemical characteristics, external environmental factors and other aspects of the virus, and some results have been achieved. Based on the chaos game representation walk model, this paper uses the time series analysis method to study the DNA sequences of the influenza virus from 1913 to 2010, and works out the early-warning signals indicator value for the outbreak of an influenza pandemic. The variances in the CCR wall〈 sequences for the pandemic years (or + -1 to 2 years) are significantly higher than those for the adjacent years, while those in the non-pandemic years are usually smaller. In this way we can provide an influenza early-warning mechanism so that people can take precautions and be well prepared prior to a pandemic.展开更多
According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destru...According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN) real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system’s performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent type and hazardous zone, the torrent management, the early-warning of disasters and the disaster reduction and prevention.展开更多
The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that ...The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that it can promptly deliver the early-warning information concerning some meteorological disasters(such as torrential rains,typhoons,cold wave,hail)to the areas affected,so as to provide reference and protection for agricultural production and effectively reduce the loss of agricultural producers.Up to now,the meteorological early-warning loudspeakers in Benxi have covered the villages.However,due to irregular occurrence of meteorological disasters,the listeners will turn off the information receivers of meteorological early-warning loudspeakers when they fail to receive meteorological information for a long time,so that the users can not promptly know the early-warning information regarding some sudden meteorological disasters.In view of this,the meteorological departments have introduced a series of management measures,such as the daily use of loudspeakers to publish weather forecast information,aimed at improving the online rate and usage rate of meteorological loudspeakers.And the management platform for online rate of meteorological early-warning loudspeakers is an important part of the management system.展开更多
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear...Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.展开更多
As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their cu...As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their customer resources,it is crucial for banks to accurately predict customers with a tendency to churn.Aiming at the typical binary classification problem like customer churn,this paper establishes an early-warning model for credit card customer churn.That is a dual search algorithm named GSAIBAS by incorporating Golden Sine Algorithm(GSA)and an Improved Beetle Antennae Search(IBAS)is proposed to optimize the parameters of the CatBoost algorithm,which forms the GSAIBAS-CatBoost model.Especially,considering that the BAS algorithm has simple parameters and is easy to fall into local optimum,the Sigmoid nonlinear convergence factor and the lane flight equation are introduced to adjust the fixed step size of beetle.Then this improved BAS algorithm with variable step size is fused with the GSA to form a GSAIBAS algorithm which can achieve dual optimization.Moreover,an empirical analysis is made according to the data set of credit card customers from Analyttica official platform.The empirical results show that the values of Area Under Curve(AUC)and recall of the proposedmodel in this paper reach 96.15%and 95.56%,respectively,which are significantly better than the other 9 common machine learning models.Compared with several existing optimization algorithms,GSAIBAS algorithm has higher precision in the parameter optimization for CatBoost.Combined with two other customer churn data sets on Kaggle data platform,it is further verified that the model proposed in this paper is also valid and feasible.展开更多
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ...On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area.展开更多
Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in ...Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.展开更多
文摘The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.
基金Yongxian Huang supported by Projects of Guangzhou Science and Technology Plan(2023A04J0409)。
文摘To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types.
基金supported by the National Natural Science Foundation of China(No.52277055).
文摘Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment.
基金supported by the Deanship of Scientific Research and Graduate Studies at King Khalid University under research grant number(R.G.P.2/93/45).
文摘Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
基金supported in part by Natural Science Foundation of Jiangsu Province under Grant BK20230255Natural Science Foundation of Shandong Province under Grant ZR2023QE281.
文摘The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.
基金Supported by a Grant from the Science and Technology Project ofYunnan Province(2006NG02)~~
文摘By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFC0407104)the National Natural Science Foundation of China(Grants No.52079049 and 51739003)+1 种基金the Central University Basic Research Project(Grant No.B200202160)the Water Science Project of Xinjiang(Grant No.YF 2020-05).
文摘The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,particularly of heightened projects in the impoundment period.Herein,a new method for monitoring the safety status of heightened dams is proposed based on the deformation monitoring data of a dam structure,a statistical model,and finite-element numerical simulation.First,a fast optimization inversion method for estimation of dam mechanical parameters was developed,which used the water pressure component extracted from a statistical model,an improved inversion objective function,and a genetic optimization iterative algorithm.Then,a finite element model of a heightened concrete gravity dam was established,and the deformation behavior of the dam with rising water levels in the impoundment period was simulated.Subsequently,mechanical parameters of aged dam parts were calculated using the fast optimization inversion method with simulated deformation and the water pressure deformation component obtained by the statistical model under the same conditions of water pressure change.Finally,a new earlywarning index of dam deformation was constructed by means of the forward-simulated deformation and other components of the statistical model.The early-warning index is useful for forecasting dam deformation under different water levels,especially high water levels.
基金supported by the National Natural Science Foundation of China (71303238)the National Science and Technology Support Plan Projects (2012BAH20B04)the compilation group of the China Agricultural Outlook Report (2015–2024)
文摘The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as agricultural outlook must be strengthened. In this study, we develop the China Agricultural Monitoring and Early-warning System (CAMES) on the basis of a comparative study of domestic and international agricultural outlook models. The system is a dynamic and multi-market partial equilibrium model that integrates biological mechanisms with economic mechanisms. This system, which includes 11 categories of 953 kinds of agricultural products, could dynamical y project agricultural market supply and demand, assess food security, and conduct scenario analysis at different spatial levels, time scale levels, and macro-micro levels. Based on the CAMES, the production, consumption, and trade of the major agricultural products in China over the next decade are projected. The fol owing conclusions are drawn:i) The production of major agricultural products wil continue to grow steadily, mainly because of the increase in yield. i ) The growth of agricultural consumption wil be slightly higher than that of agricultural production. Meanwhile, a high self-sufifciency rate is expected for cereals such as rice, wheat, and maize, with the rate being stable at around 97%. i i) Agricultural trade wil continue to thrive. The growth of soybean and milk im-ports wil slow down, but the growth of traditional agricultural exports such as vegetables and fruits is expected to continue.
基金Project 70533050 supported by the National Natural Science Foundation of China
文摘The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.
文摘By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the temperature,humidity,wind direction,wind speed,air pressure and so on.The conceptual models of high-altitude and ground situation were established when the heavy fog happened in Chizhou City.Based on considering sufficiently the special geographical environment in Chizhou City,we found the key factors which affected the local heavy fog via the relative analyses.By using the statistical forecast methods which included the second-level judgment method and regression method of event probability and so on,the forecast mode equation of heavy fog was established.Moreover,the objective forecast system of heavy fog in Chizhou City was also manufactured.It provided the basis and platform which could be referred for the heavy fog forecast,service and the release of early-warning signal.
文摘Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural disasters were differentiated into essential attributes and external characters, and its workflow mode was established on risk early-warning structure with integrated Entropy and DEA model, whose steps were put forward. On the basis of standard risk early-warning DEA model of natural disasters, weight coefficient of risk early-warning factors was determined with Information Entropy method, which improved standard risk early-warning DEA model with non-Archimedean infinitesimal, and established risk early-warning preference DEA model based on integrated entropy weight and DEA Model. Finally, model was applied into landslide risk early-warning case in earthquake-damaged emergency process on slope engineering, which exemplified the outcome could reflect more risk information than the method of standard DEA model, and reflected the rationality, feasibility, and impersonality, revealing its better ability on comprehensive safety and structure risk.
文摘The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure the warning condition that the enterprise faces and take the effective measures to eliminate. We criticize Altman’sZ calculating model and build up some new indexes for enterprise financial early-warning condition measuring and making sound decision.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. JUSRP21117)the Program for Innovative Research Team of Jiangnan University (Grant No. 2008CX002)
文摘Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been performed over the years on the biological properties, chemical characteristics, external environmental factors and other aspects of the virus, and some results have been achieved. Based on the chaos game representation walk model, this paper uses the time series analysis method to study the DNA sequences of the influenza virus from 1913 to 2010, and works out the early-warning signals indicator value for the outbreak of an influenza pandemic. The variances in the CCR wall〈 sequences for the pandemic years (or + -1 to 2 years) are significantly higher than those for the adjacent years, while those in the non-pandemic years are usually smaller. In this way we can provide an influenza early-warning mechanism so that people can take precautions and be well prepared prior to a pandemic.
基金Fund by the Ministry of Science and Technology, No.2002BA516A17 Foundation of Chinese Academy of Forestry Science, No.200114
文摘According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN) real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system’s performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent type and hazardous zone, the torrent management, the early-warning of disasters and the disaster reduction and prevention.
文摘The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that it can promptly deliver the early-warning information concerning some meteorological disasters(such as torrential rains,typhoons,cold wave,hail)to the areas affected,so as to provide reference and protection for agricultural production and effectively reduce the loss of agricultural producers.Up to now,the meteorological early-warning loudspeakers in Benxi have covered the villages.However,due to irregular occurrence of meteorological disasters,the listeners will turn off the information receivers of meteorological early-warning loudspeakers when they fail to receive meteorological information for a long time,so that the users can not promptly know the early-warning information regarding some sudden meteorological disasters.In view of this,the meteorological departments have introduced a series of management measures,such as the daily use of loudspeakers to publish weather forecast information,aimed at improving the online rate and usage rate of meteorological loudspeakers.And the management platform for online rate of meteorological early-warning loudspeakers is an important part of the management system.
基金funded by the National Natural Science Foundation of China(Nos.42320104003 and 42107163)the Funda mental Research Funds for the Central Universities.Derek Elsworth acknowledges support from the G.Albert Shoemaker endowment.
文摘Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.
基金This work is supported by the National Natural Science Foundation of China(Nos.72071150,71871174).
文摘As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their customer resources,it is crucial for banks to accurately predict customers with a tendency to churn.Aiming at the typical binary classification problem like customer churn,this paper establishes an early-warning model for credit card customer churn.That is a dual search algorithm named GSAIBAS by incorporating Golden Sine Algorithm(GSA)and an Improved Beetle Antennae Search(IBAS)is proposed to optimize the parameters of the CatBoost algorithm,which forms the GSAIBAS-CatBoost model.Especially,considering that the BAS algorithm has simple parameters and is easy to fall into local optimum,the Sigmoid nonlinear convergence factor and the lane flight equation are introduced to adjust the fixed step size of beetle.Then this improved BAS algorithm with variable step size is fused with the GSA to form a GSAIBAS algorithm which can achieve dual optimization.Moreover,an empirical analysis is made according to the data set of credit card customers from Analyttica official platform.The empirical results show that the values of Area Under Curve(AUC)and recall of the proposedmodel in this paper reach 96.15%and 95.56%,respectively,which are significantly better than the other 9 common machine learning models.Compared with several existing optimization algorithms,GSAIBAS algorithm has higher precision in the parameter optimization for CatBoost.Combined with two other customer churn data sets on Kaggle data platform,it is further verified that the model proposed in this paper is also valid and feasible.
基金supported by the National Natural Science Foundation of China project (No. 42372339)the China Geological Survey Project (Nos. DD20221816, DD20190319)。
文摘On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area.
基金supported in part by the National Key R&D Program of China (2022YFB3402100)the National Science Fund for Distinguished Young Scholars of China (52025056)。
文摘Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.