能量路由器的核心元件为双有源桥(dual active bridge,DAB)直流变压器,针对其短路故障时电流上升速率快,峰值大,导致DAB内部电力电子器件闭锁的问题,该文提出一种具有限流型结构的直流变压器,限流装置结构为从DAB高压侧H桥连接单相整流...能量路由器的核心元件为双有源桥(dual active bridge,DAB)直流变压器,针对其短路故障时电流上升速率快,峰值大,导致DAB内部电力电子器件闭锁的问题,该文提出一种具有限流型结构的直流变压器,限流装置结构为从DAB高压侧H桥连接单相整流桥,再与输出端口的限流电感相连。当直流系统发生短路故障时,限流型直流变压器采用混合控制算法进行整流,为限流电感提供钳位电压,限制故障电流的峰值,并与断路器配合实现无弧开断,该方法避免DAB中电力电子器件发生闭锁,快速实现故障限流和隔离。在仿真系统中搭建了基于10kV/750V直流变压器的限流型直流变压器的模型,仿真结果表明限流型直流变压器与断路器配合实现故障限流和隔离的有效性和可行性。展开更多
The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since ...The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since this method heavily lies on the specific forms of Green's function and only the Green's function in full-space has a closed analytic expression, it is usually limited to a full-space medium. In this study, as a first step to extend this method to an arbitrary complex fault system in half-space, the boundary integral equations (BIEs) for dynamic strike-slip on vertical complex fault system in half-space are derived based on exact Green's function for isotropic and homogeneous half-space. Effect of the geometry of the complex fault system are dealt with carefully. Final BIEs is composed of two parts: contribution from full-space, which has been thoroughly investigated by Aochi and his co-workers by using the Green's function for full-space, and that from free surface, which is studied in detail in this study.展开更多
文摘能量路由器的核心元件为双有源桥(dual active bridge,DAB)直流变压器,针对其短路故障时电流上升速率快,峰值大,导致DAB内部电力电子器件闭锁的问题,该文提出一种具有限流型结构的直流变压器,限流装置结构为从DAB高压侧H桥连接单相整流桥,再与输出端口的限流电感相连。当直流系统发生短路故障时,限流型直流变压器采用混合控制算法进行整流,为限流电感提供钳位电压,限制故障电流的峰值,并与断路器配合实现无弧开断,该方法避免DAB中电力电子器件发生闭锁,快速实现故障限流和隔离。在仿真系统中搭建了基于10kV/750V直流变压器的限流型直流变压器的模型,仿真结果表明限流型直流变压器与断路器配合实现故障限流和隔离的有效性和可行性。
基金supported by the President Fund of GUCAS(No. O85101CM03)National Natural Science Foundation of China(Nos.90715019 and 40821062)partially by National Basic Research Program of China (No.2004CB418404)
文摘The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since this method heavily lies on the specific forms of Green's function and only the Green's function in full-space has a closed analytic expression, it is usually limited to a full-space medium. In this study, as a first step to extend this method to an arbitrary complex fault system in half-space, the boundary integral equations (BIEs) for dynamic strike-slip on vertical complex fault system in half-space are derived based on exact Green's function for isotropic and homogeneous half-space. Effect of the geometry of the complex fault system are dealt with carefully. Final BIEs is composed of two parts: contribution from full-space, which has been thoroughly investigated by Aochi and his co-workers by using the Green's function for full-space, and that from free surface, which is studied in detail in this study.