期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Influence of fault slip on mining-induced pressure and optimization ofroadway support design in fault-influenced zone 被引量:10
1
作者 Hongwei Wang Yaodong Jiang +4 位作者 Sheng Xue Lingtao Mao Zhinan Lin Daixin Deng Dengqiang Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期660-671,共12页
This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The... This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, due to the combined effect of mining activities and fault slip, the mining-induced pressure and the extent of damaged rock masses in the fault-influenced zone are greater than those in the uninfluenced zone. The sharp increase and the succeeding stabilization of stress or steady increase in displacement can be identified as the precursory information of fault slip. Considering the larger mining-induced pressure in the fault-influenced zone, the new support design utilizing cables is proposed. The optimization of roadway support design suggests that the cables can be anchored in the stable surrounding rocks and can effectively mobilize the load bearing capacity of the stable surrounding rocks. The field observation indicates that the roadway is in good condition with the optimized roadway support design. 展开更多
关键词 Physical modeling fault slipMining-induced pressure Roadway support design Field observation
下载PDF
Fault diagnosis using robust cascade observers with application to spacecraft attitude control
2
作者 王宇雷 马广富 李传江 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第4期123-131,共9页
This paper proposes a new gyro and star sensor fault diagnosis architecture that designs two groups of cascade H∞ optimal fault observers using LMI for spacecraft attitude control systems.The basic idea of the approa... This paper proposes a new gyro and star sensor fault diagnosis architecture that designs two groups of cascade H∞ optimal fault observers using LMI for spacecraft attitude control systems.The basic idea of the approach is to identify the gyro fault to good effect first and then makes a further diagnosis for the star sensor based on the former.The H∞ optimal fault observer in design has the robustness with respect to model uncertainties and diagnosis uncertainties.Its robustness to unknown inputs is as a special study in frequency domain.Finally,simulation results demonstrate the effectiveness and feasibility of the proposed control algorithm. 展开更多
关键词 spacecraft attitude control system fault diagnosis H∞ optimal fault observer cascade observer
下载PDF
Combination of Model-based Observer and Support Vector Machines for Fault Detection of Wind Turbines 被引量:11
3
作者 Nassim Laouti Sami Othman +1 位作者 Mazen Alamir Nida Sheibat-Othman 《International Journal of Automation and computing》 EI CSCD 2014年第3期274-287,共14页
Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontalaxis wind turbine composed of three blades and a full converter. The support vector approach ... Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontalaxis wind turbine composed of three blades and a full converter. The support vector approach is data-based and is therefore robust to process knowledge. It is based on structural risk minimization which enhances generalization even with small training data set and it allows for process nonlinearity by using flexible kernels. In this work, a radial basis function is used as the kernel. Different parts of the process are investigated including actuators and sensors faults. With duplicated sensors, sensor faults in blade pitch positions,generator and rotor speeds can be detected. Faults of type stuck measurements can be detected in 2 sampling periods. The detection time of offset/scaled measurements depends on the severity of the fault and on the process dynamics when the fault occurs. The converter torque actuator fault can be detected within 2 sampling periods. Faults in the actuators of the pitch systems represents a higher difficulty for fault detection which is due to the fact that such faults only affect the transitory state(which is very fast) but not the final stationary state. Therefore, two methods are considered and compared for fault detection and isolation of this fault: support vector machines and a Kalman-like observer. Advantages and disadvantages of each method are discussed. On one hand, support vector machines training of transitory states would require a big amount of data in different situations, but the fault detection and isolation results are robust to variations in the input/operating point. On the other hand, the observer is model-based, and therefore does not require training, and it allows identification of the fault level, which is interesting for fault reconfiguration. But the observability of the system is ensured under specific conditions, related to the dynamics of the inputs and outputs. The whole fault detection and isolation scheme is evaluated using a wind turbine benchmark with a real sequence of wind speed. 展开更多
关键词 fault detection and isolation wind turbine Kalman-like observer support vector machines data-based classification
原文传递
Observer Design —— A Survey
4
作者 Chia-Chi Tsui 《International Journal of Automation and computing》 EI CSCD 2015年第1期50-61,共12页
This paper surveys the results of observer design for linear time-invariant(L-T-I) deterministic irreducible open-loop systems(OLS), the most basic type of OLS. An observer estimates Kxx(t) signal where K is a constan... This paper surveys the results of observer design for linear time-invariant(L-T-I) deterministic irreducible open-loop systems(OLS), the most basic type of OLS. An observer estimates Kxx(t) signal where K is a constant and x(t) is the state vector of the OLS. Thus, an observer can be used as a feedback controller that implements state feedback control(SFC) or Kxx(t)-control,and observer design is therefore utterly important in all feedback control designs of state space theory. In this survey, the observer design results are divided into three categories and for three respective main purposes. The first category of observers estimate signal Kxx(t) only with a given K, and this survey has four conclusions: 1) Function observer that estimates Kxx(t) directly is more general than state observer that estimates x(t), and may be designed with order lower than that of state observer, and the additional design objective is to minimize observer order; 2) The function observer design problem has already been simplified to the solving of a single set of linear equations only while seeking the lowest possible number of rows of the solution matrix, and an apparently most effective and general algorithm of solving such a problem can guarantee unified upper and lower bounds of the observer order; 3) Because such a single set of linear equations is the simplest possible theoretical formulation of the design problem and such theoretical observer order bounds are the lowest possible, and because the general, simple, and explicit theoretical formula for the function observer order itself do not exist, the theoretical part of this design problem is solved; 4) Because the function observer order is generically near its upper bound, further improvement on the computational design algorithm so that the corresponding observer order can be further reduced,is generically not worthwhile. The second category of observers further realize the loop transfer function and robustness properties of the direct SFC, and the conclusion of this survey is also fourfold: 1) To fully realize the loop transfer function of a practically designed Kxx(t)-control, the observer must be an output feedback controller(OFC) which has zero gain to OLS input; 2) If parameter K is separately designed before the observer design, as in the separation principle which has been followed by almost all people for over half of a century, then OFC that estimates Kxx(t) does not exist for almost all OLS s; 3) As a result, a synthesized design principle that designs an OFC first and is valid for almost all OLS s, is proposed and fully developed, the corresponding K will be designed afterwards and will be constrained by the OFC order as well as the OFC parameters; 4) Although the Kxx(t)-control is constrained in this new design principle and is therefore called the "generalized SFC"(as compared to the existing SFC in which K is unconstrained), it is still strong enough for most OLS s and this new design principle overcomes many fundamental drawbacks of the existing separation principle. The third category of observers estimate Kxx(t) signal at special applications such as fault detection and identification and systems with time delay effects. Using directly the result of OFC that estimates Kxx(t) of the second category, these observers can be generally and satisfactorily designed. 展开更多
关键词 Low order function observer robust output feedback observer synthesized design principle faults and time-delays
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部