Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as ...Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as precision, sensitivity, reliability and compact algorithm, and so on, and enlightened by the energy operator separation algorithm (EOSA), a new demodulation method which is optimizing energy operator separation algorithm (OEOSA) is presented. In the algorithm, the non-linear differential operator is utilized to its differential equation: Choosing the unit impulse response length of filter and fixing the weighting coefficient for inportant points. The method has been applied in diagnosing tooth broden and fatiguing crack of gear faults successfully. It provides demodulation analysis of machine signal with a new approach.展开更多
This paper proposes a new gyro and star sensor fault diagnosis architecture that designs two groups of cascade H∞ optimal fault observers using LMI for spacecraft attitude control systems.The basic idea of the approa...This paper proposes a new gyro and star sensor fault diagnosis architecture that designs two groups of cascade H∞ optimal fault observers using LMI for spacecraft attitude control systems.The basic idea of the approach is to identify the gyro fault to good effect first and then makes a further diagnosis for the star sensor based on the former.The H∞ optimal fault observer in design has the robustness with respect to model uncertainties and diagnosis uncertainties.Its robustness to unknown inputs is as a special study in frequency domain.Finally,simulation results demonstrate the effectiveness and feasibility of the proposed control algorithm.展开更多
The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In th...The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...展开更多
In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear ea...In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear easily. Circuit faults will inevitably lead to serious losses of availability or impeded mission success without self-repair over the mission duration. Traditional fault-repair methods based on redundant fault-tolerant technique are straightforward to implement, yet their area, power and weight cost can be excessive. Moreover they utilize all plug-in or component level circuits to realize redundant backup, such that their applicability is limited. Hence, a novel selfrepair technology based on evolvable hardware(EHW) and reparation balance technology(RBT) is proposed. Its cost is low, and fault self-repair of various circuits and devices can be realized through dynamic configuration. Making full use of the fault signals, correcting circuit can be found through EHW technique to realize the balance and compensation of the fault output-signals. In this paper, the self-repair model was analyzed which based on EHW and RBT technique, the specific self-repair strategy was studied, the corresponding self-repair circuit fault system was designed, and the typical faults were simulated and analyzed which combined with the actual electronic devices. Simulation results demonstrated that the proposed fault self-repair strategy was feasible. Compared to traditional techniques, fault self-repair based on EHW consumes fewer hardware resources, and the scope of fault self-repair was expanded significantly.展开更多
基金This project is supported by National Ministry of Education of China (No.020616)Science and Technology Project of Municipal Educational Committee of Chongqing(No.030602)Scientific Research Foundation of Chongqing Institute of Technology(No.2004ZD10).
文摘Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as precision, sensitivity, reliability and compact algorithm, and so on, and enlightened by the energy operator separation algorithm (EOSA), a new demodulation method which is optimizing energy operator separation algorithm (OEOSA) is presented. In the algorithm, the non-linear differential operator is utilized to its differential equation: Choosing the unit impulse response length of filter and fixing the weighting coefficient for inportant points. The method has been applied in diagnosing tooth broden and fatiguing crack of gear faults successfully. It provides demodulation analysis of machine signal with a new approach.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60774062)the CAST Innovation Funding Project(Grant No. 20090604)
文摘This paper proposes a new gyro and star sensor fault diagnosis architecture that designs two groups of cascade H∞ optimal fault observers using LMI for spacecraft attitude control systems.The basic idea of the approach is to identify the gyro fault to good effect first and then makes a further diagnosis for the star sensor based on the former.The H∞ optimal fault observer in design has the robustness with respect to model uncertainties and diagnosis uncertainties.Its robustness to unknown inputs is as a special study in frequency domain.Finally,simulation results demonstrate the effectiveness and feasibility of the proposed control algorithm.
基金Supported by National Natural Science Foundation of China (No. 50778058 and No. 90715038)National Key Technology Research and Development Program of China (No. 2006BAC13B02)Major State Basic Research Development Program of China ("973" Program, No. 2008CB425802)
文摘The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...
基金supported by the National Natural Science Foundation of China (Nos. 61271153, 61372039)
文摘In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear easily. Circuit faults will inevitably lead to serious losses of availability or impeded mission success without self-repair over the mission duration. Traditional fault-repair methods based on redundant fault-tolerant technique are straightforward to implement, yet their area, power and weight cost can be excessive. Moreover they utilize all plug-in or component level circuits to realize redundant backup, such that their applicability is limited. Hence, a novel selfrepair technology based on evolvable hardware(EHW) and reparation balance technology(RBT) is proposed. Its cost is low, and fault self-repair of various circuits and devices can be realized through dynamic configuration. Making full use of the fault signals, correcting circuit can be found through EHW technique to realize the balance and compensation of the fault output-signals. In this paper, the self-repair model was analyzed which based on EHW and RBT technique, the specific self-repair strategy was studied, the corresponding self-repair circuit fault system was designed, and the typical faults were simulated and analyzed which combined with the actual electronic devices. Simulation results demonstrated that the proposed fault self-repair strategy was feasible. Compared to traditional techniques, fault self-repair based on EHW consumes fewer hardware resources, and the scope of fault self-repair was expanded significantly.