Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o...Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.展开更多
The devastating Ms8.0 Wenchuan earthquake ruptured two large parallel thrust faults along the middle segment of the Longmenshan thrust belt. Preseismic and postseismic leveling data indicated the hanging wall of the Y...The devastating Ms8.0 Wenchuan earthquake ruptured two large parallel thrust faults along the middle segment of the Longmenshan thrust belt. Preseismic and postseismic leveling data indicated the hanging wall of the Yingxiu-Beichuan-Nanba thrust fault mainly presented coseismic uplift with respect to the reference point at Pingwu county town, and the observed maximum uplift of 4.7 m is located at Beichuan county (Qushan town) which is about 100 m west of the fault scarp. The foot wall of the Yingxiu-Beichuan-Nanba thrust fault mainly showed subsidence with maximum subsidence of 0.6 m near the rupture. By employing a listric dislocation model, we found that the fault geometry model of exponential dip angle δ=88°×[1-exp(-9/h)] with depth of 18 km and uniform thrust-slip of 5.6 m could fit the observed coseismic vertical deformation very well, which verifies the listric thrust model of the Longmenshan orogenic zone.展开更多
In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equat...In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equations), and find all consistent fault patterns based on the equation model. We can also find all fault patterns, in which the fault node numbers are less than or equal to t without supposing t-diagnosable. It is not impossible for all graphic models.展开更多
Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ...Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery.展开更多
Based on GPS velocity during 1999-2007,GPS baseline time series on large scale during1999-2008 and cross-fault leveling data during 1985-2008,the paper makes some analysis and discussion to study and summarize the mov...Based on GPS velocity during 1999-2007,GPS baseline time series on large scale during1999-2008 and cross-fault leveling data during 1985-2008,the paper makes some analysis and discussion to study and summarize the movement,tectonic deformation and strain accumulation evolution characteristics of the Longmenshan fault and the surrounding area before the MS8. 0 Wenchuan earthquake,as well as the possible physical mechanism late in the seismic cycle of the Wenchuan earthquake. Multiple results indicate that:GPS velocity profiles show that obvious continuous deformation across the eastern Qinghai-Tibetan Plateau before the earthquake was distributed across a zone at least 500 km wide,while there was little deformation in Sichuan Basin and Longmenshan fault zone,which means that the eastern Qinghai-Tibetan Plateau provides energy accumulation for locked Longmenshan fault zone continuously. GPS strain rates show that the east-west compression deformation was larger in the northwest of the mid-northern segment of the Longmenshan fault zone,and deformation amplitude decreased gradually from far field to near fault zone,and there was little deformation in fault zone. The east-west compression deformation was significant surrounding the southwestern segment of the Longmenshan fault zone,and strain accumulation rate was larger than that of mid-northern segment.Fault locking indicates nearly whole Longmenshan fault was locked before the earthquake except the source of the earthquake which was weakly locked,and a 20 km width patch in southwestern segment between 12 km to 22. 5 km depth was in creeping state. GPS baseline time series in northeast direction on large scale became compressive generally from 2005 in the North-South Seismic Belt,which reflects that relative compression deformation enhances. The cross-fault leveling data show that annual vertical change rate and deformation trend accumulation rate in the Longmenshan fault zone were little,which indicates that vertical activity near the fault was very weak and the fault was tightly locked. According to analyses of GPS and cross-fault leveling data before the Wenchuan earthquake,we consider that the Longmenshan fault is tightly locked from the surface to the deep,and the horizontal and vertical deformation are weak surrounding the fault in relatively small-scale crustal deformation. The process of weak deformation may be slow,and weak deformation area may be larger when large earthquake is coming. Continuous and slow compression deformation across eastern Qinghai-Tibetan Plateau before the earthquake provides dynamic support for strain accumulation in the Longmenshan fault zone in relative large-scale crustal deformation.展开更多
In the modern analogue design, Transistor Level Fault Simulation (TLFS) plays the im-portant part since every fault in the whole circuit has to be simulated at that level. Unfortunately, it is a very CPU intensive tas...In the modern analogue design, Transistor Level Fault Simulation (TLFS) plays the im-portant part since every fault in the whole circuit has to be simulated at that level. Unfortunately, it is a very CPU intensive task even though it maintains the high accuracy. Therefore, High Level Fault Modeling (HLFM) and High Level Fault Simulation (HLFS) are required in order to alleviate the efforts of simulation. In this paper, different HLFM approaches are reviewed at the device level during last two decades. We clarify their domains of application and evaluate their strengths and current limitations. We also analyze causes of faults and introduce various test approaches.展开更多
Aiming at different variation patterns of cross-fault short-leveling before earthquakes,the paper establishes the 2-D finite-element models with different crustal stratification and fault occurrence perpendicular to L...Aiming at different variation patterns of cross-fault short-leveling before earthquakes,the paper establishes the 2-D finite-element models with different crustal stratification and fault occurrence perpendicular to Longmenshan fault zone. By contact analysis and viscoelastic finite element method,the influence of fault structure on cross-fault short-leveling is obtained under the same constraint conditions,the results show that:with the increase of the horizontal projection distance of fault,the cumulative displacements of surface increase gradually in the models with fixed dip angles of the fault plane(model 1). However,when the horizontal projection distance exceeds 20 km,the influence of fault?s dip angle on the cumulative displacements of surface short-leveling will decrease significantly,and the cumulative displacements are maintained at about 1. 5 m. However,in the listric fault models(model 2),when the projection distance is less than 20 km,the listric fault structure impedes the sliding of fault. The short-leveling variation rate is only half of model 1;as a result,the ability to reflect the regional stress enhancement by cross-fault short-leveling is further weakened. But when the horizontal projection distance exceeds25 km,the cumulative displacements significantly increase,with the maximum displacement reaching 1. 75 m. The results of equivalent stress show that the listric fault structure causes a sudden increasement in equivalent stress when the horizontal projection distance is 10 km,higher equivalent stress values are accumulated between the projection distance of 5-20 km,and then high-low stress difference zones are formed at the bottom of the fault plane and near the transition zone of low-high dip angle.展开更多
The Longmenshan-Longriba region is located on the eastern edge of the Tibetan Plateau, and is an ideal place to study the eastward extrusion and uplift mechanism of the plateau. Previous studies on this area mainly fo...The Longmenshan-Longriba region is located on the eastern edge of the Tibetan Plateau, and is an ideal place to study the eastward extrusion and uplift mechanism of the plateau. Previous studies on this area mainly focused on tectonic activity and seismic hazard, with few studies giving its overall deformation characteristics and dynamic mechanism. This paper uses the latest dense GPS data, combined with precise Leveling data to analyze the kinematic characteristics and deformation mode of the Longmenshan fault zone (LMSF) and the Longriba fault zone (LRBF). The results show that both the Longmenshan fault zone and the Longriba fault zone have certain right-lateral strike-slip and thrusting, indicating that they play an important role in adjusting strain distribution and absorbing tectonic deformation;The strain-rate field on the Longriba fault zone is broadly distributed, suggesting that the deformation field is at least partially coupled;while the strain-rate field on the Longmenshan fault zone presents a non-uniform distribution, indicating different dynamic sources acting on segments. The high strain rate areas revealed in this study points us to the high-risk area for future earthquakes. The present-day vertical motion velocity field in the region obtained from Leveling and GPS data shows a mismatch between the regional deformation field and active tectonics, which can be explained by the incomplete coupling of deformation between the lower and upper crust.展开更多
Base-level is a kind of surface which controls sedimentation and erosion. So, it can be concluded that it is base-level change that controls the formation and internal structure of a sequence. A single cycle of base-l...Base-level is a kind of surface which controls sedimentation and erosion. So, it can be concluded that it is base-level change that controls the formation and internal structure of a sequence. A single cycle of base-level change can generate four sets of different stacking patterns. They are two sets of aggradation, one progradation and one retrogradation, which affects the features of the internal structure of a sequence. Lishu fault subsidence of Songliao basin is a typical half-graben lacustrine basin. Comprehensive base-level change analysis indicates that six base-level cycles and their related six sequences can be recognized between T 4 and T 5 seismic reflection surface. The contemporaneous fault is the main controlling factor of the fault lacustrine basin. There are obvious differences exist in the composition of sedimentary systems and all systems tracts between its steep slope (the side that basin control fault existed) and flat slope. Except highstand systems tract is composed of fan delta-lacustrine system, lowstand systems tract, transgressive systems tract and regressive systems tract are all made up of fan delta-underwater fan-lacustrine sedimentary systems in the side of steep slope.展开更多
基金funded by the Science and Technology Project of China Southern Power Grid(YNKJXM20210175)the National Natural Science Foundation of China(52177070).
文摘Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.
基金jointly sup-ported by National Key Basic Research 973 project(2004CB418403)National Natural Science Foundation of China(40974062)
文摘The devastating Ms8.0 Wenchuan earthquake ruptured two large parallel thrust faults along the middle segment of the Longmenshan thrust belt. Preseismic and postseismic leveling data indicated the hanging wall of the Yingxiu-Beichuan-Nanba thrust fault mainly presented coseismic uplift with respect to the reference point at Pingwu county town, and the observed maximum uplift of 4.7 m is located at Beichuan county (Qushan town) which is about 100 m west of the fault scarp. The foot wall of the Yingxiu-Beichuan-Nanba thrust fault mainly showed subsidence with maximum subsidence of 0.6 m near the rupture. By employing a listric dislocation model, we found that the fault geometry model of exponential dip angle δ=88°×[1-exp(-9/h)] with depth of 18 km and uniform thrust-slip of 5.6 m could fit the observed coseismic vertical deformation very well, which verifies the listric thrust model of the Longmenshan orogenic zone.
基金Project supported by the National Natural Science Foundation of China! (No.69973016).
文摘In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equations), and find all consistent fault patterns based on the equation model. We can also find all fault patterns, in which the fault node numbers are less than or equal to t without supposing t-diagnosable. It is not impossible for all graphic models.
基金This paper is supported by the National Natural Science Foundation of China (NSFC) under Grant No.50775083
文摘Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery.
基金supported by the National Key R&D Program of China(2018YFC1503606 2017YFC1500502)Earthquake Tracking Task(2019010215)
文摘Based on GPS velocity during 1999-2007,GPS baseline time series on large scale during1999-2008 and cross-fault leveling data during 1985-2008,the paper makes some analysis and discussion to study and summarize the movement,tectonic deformation and strain accumulation evolution characteristics of the Longmenshan fault and the surrounding area before the MS8. 0 Wenchuan earthquake,as well as the possible physical mechanism late in the seismic cycle of the Wenchuan earthquake. Multiple results indicate that:GPS velocity profiles show that obvious continuous deformation across the eastern Qinghai-Tibetan Plateau before the earthquake was distributed across a zone at least 500 km wide,while there was little deformation in Sichuan Basin and Longmenshan fault zone,which means that the eastern Qinghai-Tibetan Plateau provides energy accumulation for locked Longmenshan fault zone continuously. GPS strain rates show that the east-west compression deformation was larger in the northwest of the mid-northern segment of the Longmenshan fault zone,and deformation amplitude decreased gradually from far field to near fault zone,and there was little deformation in fault zone. The east-west compression deformation was significant surrounding the southwestern segment of the Longmenshan fault zone,and strain accumulation rate was larger than that of mid-northern segment.Fault locking indicates nearly whole Longmenshan fault was locked before the earthquake except the source of the earthquake which was weakly locked,and a 20 km width patch in southwestern segment between 12 km to 22. 5 km depth was in creeping state. GPS baseline time series in northeast direction on large scale became compressive generally from 2005 in the North-South Seismic Belt,which reflects that relative compression deformation enhances. The cross-fault leveling data show that annual vertical change rate and deformation trend accumulation rate in the Longmenshan fault zone were little,which indicates that vertical activity near the fault was very weak and the fault was tightly locked. According to analyses of GPS and cross-fault leveling data before the Wenchuan earthquake,we consider that the Longmenshan fault is tightly locked from the surface to the deep,and the horizontal and vertical deformation are weak surrounding the fault in relatively small-scale crustal deformation. The process of weak deformation may be slow,and weak deformation area may be larger when large earthquake is coming. Continuous and slow compression deformation across eastern Qinghai-Tibetan Plateau before the earthquake provides dynamic support for strain accumulation in the Longmenshan fault zone in relative large-scale crustal deformation.
基金Supported by the Fundamental Research Grand Scheme(Ref: frgs 2/2010/TK/UTP/0318, Ministry of High Education (MOHE)MalaysiaShort Tem Internal Research Fund (STIRF No. 20/10.11)) provided by Research Enterprise Office, Universiti Teknologi Petronas, Malaysia in 2010-2012
文摘In the modern analogue design, Transistor Level Fault Simulation (TLFS) plays the im-portant part since every fault in the whole circuit has to be simulated at that level. Unfortunately, it is a very CPU intensive task even though it maintains the high accuracy. Therefore, High Level Fault Modeling (HLFM) and High Level Fault Simulation (HLFS) are required in order to alleviate the efforts of simulation. In this paper, different HLFM approaches are reviewed at the device level during last two decades. We clarify their domains of application and evaluate their strengths and current limitations. We also analyze causes of faults and introduce various test approaches.
基金supported by the Youth Science and Technology Fund of China Earthquake Networks Center(QNJJ201801)the National Key R&D Programof China(2018YFC0807000)
文摘Aiming at different variation patterns of cross-fault short-leveling before earthquakes,the paper establishes the 2-D finite-element models with different crustal stratification and fault occurrence perpendicular to Longmenshan fault zone. By contact analysis and viscoelastic finite element method,the influence of fault structure on cross-fault short-leveling is obtained under the same constraint conditions,the results show that:with the increase of the horizontal projection distance of fault,the cumulative displacements of surface increase gradually in the models with fixed dip angles of the fault plane(model 1). However,when the horizontal projection distance exceeds 20 km,the influence of fault?s dip angle on the cumulative displacements of surface short-leveling will decrease significantly,and the cumulative displacements are maintained at about 1. 5 m. However,in the listric fault models(model 2),when the projection distance is less than 20 km,the listric fault structure impedes the sliding of fault. The short-leveling variation rate is only half of model 1;as a result,the ability to reflect the regional stress enhancement by cross-fault short-leveling is further weakened. But when the horizontal projection distance exceeds25 km,the cumulative displacements significantly increase,with the maximum displacement reaching 1. 75 m. The results of equivalent stress show that the listric fault structure causes a sudden increasement in equivalent stress when the horizontal projection distance is 10 km,higher equivalent stress values are accumulated between the projection distance of 5-20 km,and then high-low stress difference zones are formed at the bottom of the fault plane and near the transition zone of low-high dip angle.
文摘The Longmenshan-Longriba region is located on the eastern edge of the Tibetan Plateau, and is an ideal place to study the eastward extrusion and uplift mechanism of the plateau. Previous studies on this area mainly focused on tectonic activity and seismic hazard, with few studies giving its overall deformation characteristics and dynamic mechanism. This paper uses the latest dense GPS data, combined with precise Leveling data to analyze the kinematic characteristics and deformation mode of the Longmenshan fault zone (LMSF) and the Longriba fault zone (LRBF). The results show that both the Longmenshan fault zone and the Longriba fault zone have certain right-lateral strike-slip and thrusting, indicating that they play an important role in adjusting strain distribution and absorbing tectonic deformation;The strain-rate field on the Longriba fault zone is broadly distributed, suggesting that the deformation field is at least partially coupled;while the strain-rate field on the Longmenshan fault zone presents a non-uniform distribution, indicating different dynamic sources acting on segments. The high strain rate areas revealed in this study points us to the high-risk area for future earthquakes. The present-day vertical motion velocity field in the region obtained from Leveling and GPS data shows a mismatch between the regional deformation field and active tectonics, which can be explained by the incomplete coupling of deformation between the lower and upper crust.
文摘Base-level is a kind of surface which controls sedimentation and erosion. So, it can be concluded that it is base-level change that controls the formation and internal structure of a sequence. A single cycle of base-level change can generate four sets of different stacking patterns. They are two sets of aggradation, one progradation and one retrogradation, which affects the features of the internal structure of a sequence. Lishu fault subsidence of Songliao basin is a typical half-graben lacustrine basin. Comprehensive base-level change analysis indicates that six base-level cycles and their related six sequences can be recognized between T 4 and T 5 seismic reflection surface. The contemporaneous fault is the main controlling factor of the fault lacustrine basin. There are obvious differences exist in the composition of sedimentary systems and all systems tracts between its steep slope (the side that basin control fault existed) and flat slope. Except highstand systems tract is composed of fan delta-lacustrine system, lowstand systems tract, transgressive systems tract and regressive systems tract are all made up of fan delta-underwater fan-lacustrine sedimentary systems in the side of steep slope.