In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogene...In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs.展开更多
As requirements for system quality have increased, the need for high system reliability is also increasing. Soflnvare systems are extremely important, in terms of enhanced reliability and stability, for providing high...As requirements for system quality have increased, the need for high system reliability is also increasing. Soflnvare systems are extremely important, in terms of enhanced reliability and stability, for providing high quality services to customers. However, because of the complexity of software systems, soft-ware development can be time-consuming and expensive. Many statistical models have been developed in the past years to estimate soflnvare reliability. In this paper, we propose a new three-parameter fault-detection software reliability model with the uncertainty of operating environments. The explicit mean value function solution for the proposed model is presented. Examples are presented to illustrate the goodness-of-fit of the proposed model and several existing non-homogeneous Poisson process (NHPP) models based on three sets of failure data collected from software applications. The results show that the proposed model fits significantly better than other existing NHPP models based on three criteria such as mean squared error (MSE), predictive ratio risk (PRR), and predictive power (PP).展开更多
基金supported by the National Natural Science Foundation of China(61070220)the Anhui Provincial Natural Science Foundation(1408085MKL79)
文摘In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs.
文摘As requirements for system quality have increased, the need for high system reliability is also increasing. Soflnvare systems are extremely important, in terms of enhanced reliability and stability, for providing high quality services to customers. However, because of the complexity of software systems, soft-ware development can be time-consuming and expensive. Many statistical models have been developed in the past years to estimate soflnvare reliability. In this paper, we propose a new three-parameter fault-detection software reliability model with the uncertainty of operating environments. The explicit mean value function solution for the proposed model is presented. Examples are presented to illustrate the goodness-of-fit of the proposed model and several existing non-homogeneous Poisson process (NHPP) models based on three sets of failure data collected from software applications. The results show that the proposed model fits significantly better than other existing NHPP models based on three criteria such as mean squared error (MSE), predictive ratio risk (PRR), and predictive power (PP).