All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more ef...All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more effective fault repairing methods are required.A routing and wavelength assignment method based on SDN is designed and analyzed from the perspective of service function chaining in this paper.A multi-objective integer linear programming model based on impairment-aware and scheduling time is constructed by combining the unified control of control plane with the resource allocation mode of service function virtualization.Meanwhile,an improved Firefly Algorithm is adopted to solve the model for obtaining a better scheduling scheme,so as to the resources are allocated on-demand in a more flexible and efficient way,which effectively improved the self-recovery capability of the network.In the simulation experiments,Through the comparison between the method proposed and methods based on centralization and distribution,method proposed in the paper is superior to the compared ones in the indexes of survivability,blocking probability,link recovery time,and presents a better scheduling performance,makes the system has stronger ability of self-healing in the face of failure.展开更多
In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage hap...In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage happens in pipes. This paper studies the effects of repairing strategies on the failure probability of the pipe systems in process industries based on the time-average fault tree approach, especially the in-operation repairing strategies including pressured in-operation repairing activities. The fault tree model can predict the effect of different repairing plans on the pipe failure probability, which is significant to the optimization of the repairing plans. At first pipes are distinguished into four states in this model, i.e., successive state, flaw state, leakage state and failure state. Then the fault tree approach, which is usually applied in the studies of dynamic equipment, is adopted to model the pipe failure. Moreover, the effect of pressured in-operation repairing is also considered in the model. In addition, this paper proposes a series of time-average parameters of the fault tree model, all of which are used to calculate node parameters of the fault tree model. At last, a practical case is calculated based on the fault tree model in a repairing activity of pipe thinning.展开更多
基金supported by the National Science and Technology Major Project(No.2016ZX03001023-005)National Natural Science Foundation of China(No.61403109)+2 种基金China Postdoctoral Science Foundation(No.2019M651263)Scientific Research Fund of Heilongjiang Provincial Education Department(No.12541169)Natural Science Foundation of Heilongjiang Province(No.F2017015)。
文摘All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more effective fault repairing methods are required.A routing and wavelength assignment method based on SDN is designed and analyzed from the perspective of service function chaining in this paper.A multi-objective integer linear programming model based on impairment-aware and scheduling time is constructed by combining the unified control of control plane with the resource allocation mode of service function virtualization.Meanwhile,an improved Firefly Algorithm is adopted to solve the model for obtaining a better scheduling scheme,so as to the resources are allocated on-demand in a more flexible and efficient way,which effectively improved the self-recovery capability of the network.In the simulation experiments,Through the comparison between the method proposed and methods based on centralization and distribution,method proposed in the paper is superior to the compared ones in the indexes of survivability,blocking probability,link recovery time,and presents a better scheduling performance,makes the system has stronger ability of self-healing in the face of failure.
基金Supported by National Science and Technology Pillar Program in the Twelfth Five-Year Plan (No. 2011BAK06B02)National Basic Research Program of China ("973" Program, No. 2012CB026000)
文摘In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage happens in pipes. This paper studies the effects of repairing strategies on the failure probability of the pipe systems in process industries based on the time-average fault tree approach, especially the in-operation repairing strategies including pressured in-operation repairing activities. The fault tree model can predict the effect of different repairing plans on the pipe failure probability, which is significant to the optimization of the repairing plans. At first pipes are distinguished into four states in this model, i.e., successive state, flaw state, leakage state and failure state. Then the fault tree approach, which is usually applied in the studies of dynamic equipment, is adopted to model the pipe failure. Moreover, the effect of pressured in-operation repairing is also considered in the model. In addition, this paper proposes a series of time-average parameters of the fault tree model, all of which are used to calculate node parameters of the fault tree model. At last, a practical case is calculated based on the fault tree model in a repairing activity of pipe thinning.