Roughly along the Animaqing Maji peak, the Kunlun fault section between the Tuosuo Lake and Kendingna (east Maqin) can be subdivided into two geometric segments: the Huashixia and the Maqin segments. These two segment...Roughly along the Animaqing Maji peak, the Kunlun fault section between the Tuosuo Lake and Kendingna (east Maqin) can be subdivided into two geometric segments: the Huashixia and the Maqin segments. These two segments behave differently in their Holocene slip rates and paleo-earthquake activities, with obviously higher paleo-seismic activity on the Huashixia segment than on Maqin segment. As many as four strong Holocene earthquakes are identified on the Huashixia segment from trenching and geomorphic studies. The recurrent interval for the latest three earthquakes are at about 500 a and 640 a, respectively. On the Maqin segment, at least three paleo-earthquake events can be defined from trenching, with a recurrent interval for the latest two events at about 1000 a. M = 7.5 earthquakes on Huashixia segment recur at every 411 a to 608 a with a characteristic slip at 5.75±0.57 m. Although the Maqin segment is less active, its accumulated strain energy during the long time period since last earthquake occurred (about 1070 a BP) deserves enough notice on its future earthquake probabilities.展开更多
Based on the geological tectonics, aftershock activity, earthquake surface rupture and peak ground motion, the geometric and dynamic characteristics of seismogenic tectonics about the 1995 Hanshin earthquake are analy...Based on the geological tectonics, aftershock activity, earthquake surface rupture and peak ground motion, the geometric and dynamic characteristics of seismogenic tectonics about the 1995 Hanshin earthquake are analysed. Nojima fault and Rokko fault have the same trending direction, but opposite dips. Their rising and falling plates are in symmetrically diagonal distribution. The two faults can be defined as thrust strike slip faults and constitute a pivotal strike slip fault. The earthquake just occurred at the pivot, which is the seismotectonics for the earthquake to develop and occur. The pivotal movement along a strike slip fault often leads to the occurrence of large earthquakes, whose dynamic process can be demonstrated by the stress analysis on the torsion of a beam with rectangle section. The displacement of earthquake surface rupture, aftershock density and peak acceleration change in a certain range of epicentral distance just similar as the shear stress changes from the center to the sides in the rectangle section. The distribution characteristics of the heaviest damage areas are also discussed in the article from the aspects of special geological tectonics and seismotectonic condition. The result obtained from the article can be applied not only to realizing the potencial earthquake sources in middle long time, but also to build reasonably the prediction model about earthquake hazard.展开更多
基金Sino-French Cooperative Research program ″The Shortening Mechanisms of Eastern Kunlun Lithosphere″.
文摘Roughly along the Animaqing Maji peak, the Kunlun fault section between the Tuosuo Lake and Kendingna (east Maqin) can be subdivided into two geometric segments: the Huashixia and the Maqin segments. These two segments behave differently in their Holocene slip rates and paleo-earthquake activities, with obviously higher paleo-seismic activity on the Huashixia segment than on Maqin segment. As many as four strong Holocene earthquakes are identified on the Huashixia segment from trenching and geomorphic studies. The recurrent interval for the latest three earthquakes are at about 500 a and 640 a, respectively. On the Maqin segment, at least three paleo-earthquake events can be defined from trenching, with a recurrent interval for the latest two events at about 1000 a. M = 7.5 earthquakes on Huashixia segment recur at every 411 a to 608 a with a characteristic slip at 5.75±0.57 m. Although the Maqin segment is less active, its accumulated strain energy during the long time period since last earthquake occurred (about 1070 a BP) deserves enough notice on its future earthquake probabilities.
文摘Based on the geological tectonics, aftershock activity, earthquake surface rupture and peak ground motion, the geometric and dynamic characteristics of seismogenic tectonics about the 1995 Hanshin earthquake are analysed. Nojima fault and Rokko fault have the same trending direction, but opposite dips. Their rising and falling plates are in symmetrically diagonal distribution. The two faults can be defined as thrust strike slip faults and constitute a pivotal strike slip fault. The earthquake just occurred at the pivot, which is the seismotectonics for the earthquake to develop and occur. The pivotal movement along a strike slip fault often leads to the occurrence of large earthquakes, whose dynamic process can be demonstrated by the stress analysis on the torsion of a beam with rectangle section. The displacement of earthquake surface rupture, aftershock density and peak acceleration change in a certain range of epicentral distance just similar as the shear stress changes from the center to the sides in the rectangle section. The distribution characteristics of the heaviest damage areas are also discussed in the article from the aspects of special geological tectonics and seismotectonic condition. The result obtained from the article can be applied not only to realizing the potencial earthquake sources in middle long time, but also to build reasonably the prediction model about earthquake hazard.