Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no...Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.展开更多
Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be dep...Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service...For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states.展开更多
In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation res...In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation results show that this neural approach for data fusion is feasible.展开更多
In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is sing...In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is single or two-current sensor fault occurs,based on the proposed method the missing current information can be reconstructed by using direct current(DC)bus current sensor and the three-phase current can be updated in time within any two adjacent sampling periods,so as to ensure stability of the closed-loop system.And then the switchover and fault tolerant control of fault current sensor would be accomplished by fault diagnosis method based on adaptive threshold judgment.For the reconstructed signal error caused by the modulation method and the main control target of electric pitch system,a variable universe fuzzy control method is used in the speed loop,which can improve the anti-disturbance ability to load variation,and the robustness of fault tolerance system.The results show that the fault tolerant control method makes the variable pitch control system still has ideal control characteristics in case of sensor failure although part of the system performance is lost,thus the correctness of the proposed method is verified.展开更多
In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swa...In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swarm optimization(PSO) is constructed to model the unknown system dynamics. By utilizing the estimated system states, the particle swarm optimized critic neural network(PSOCNN) is employed to solve the Hamilton-Jacobi-Bellman equation(HJBE) more efficiently.Then, a data-based FTC scheme, which consists of the NN identifier and the fault compensator, is proposed to achieve actuator fault tolerance. The stability of the closed-loop system under actuator faults is guaranteed by the Lyapunov stability theorem. Finally, simulations are provided to demonstrate the effectiveness of the developed method.展开更多
In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system ...In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system model.Packet loss dependent Lyapunov function is used and a fault tolerant controller is proposed respectively for arbitrary packet loss process and Markovian packet loss process.Considering a controlled plant with external energy-bounded disturbance,a robust H ∞ fault tolerant controller is designed for the NCS.These results are also expanded to the NCS with packet loss and networked-induced delay.Numerical examples are given to illustrate the effectiveness of the proposed design method.展开更多
A model-based fault tolerant control approach for hybrid linear dynamic systems is proposed in this paper. The proposed method, taking advantage of reliable control, can maintain the performance of the faulty system d...A model-based fault tolerant control approach for hybrid linear dynamic systems is proposed in this paper. The proposed method, taking advantage of reliable control, can maintain the performance of the faulty system during the time delay of fault detection and diagnosis (FDD) and fault accommodation (FA), which can be regarded as the first line of defence against sensor faults. Simulation results of a three-tank system with sensor fault are given to show the efficiency of the method.展开更多
The consensus protocol is one of the core technologies in blockchain,which plays a crucial role in ensuring the block generation rate,consistency,and safety of the blockchain system.Blockchain systems mainly adopt the...The consensus protocol is one of the core technologies in blockchain,which plays a crucial role in ensuring the block generation rate,consistency,and safety of the blockchain system.Blockchain systems mainly adopt the Byzantine Fault Tolerance(BFT)protocol,which often suffers fromslow consensus speed and high communication consumption to prevent Byzantine nodes from disrupting the consensus.In this paper,this paper proposes a new dual-mode consensus protocol based on node identity authentication.It divides the consensus process into two subprotocols:Check_BFT and Fast_BFT.In Check_BFT,the replicas authenticate the primary’s identity by monitoring its behaviors.First,assume that the systemis in a pessimistic environment,Check_BFT protocol detects whether the current environment is safe and whether the primary is an honest node;Enter the fast consensus stage after confirming the environmental safety,and implement Fast_BFT protocol.It is assumed that there are 3f+1 nodes in total.If more than 2f+1 nodes identify that the primary is honest,it will enter the Fast_BFT process.In Fast_BFT,the primary is allowed to handle transactions alone,and the replicas can only receive the messages sent by the primary.The experimental results show that the CF-BFT protocol significantly reduces the communication overhead and improves the throughput and scalability of the consensus protocol.Compared with the SAZyzz protocol,the throughput is increased by 3 times in the best case and 60%in the worst case.展开更多
In cloud computing(CC),resources are allocated and offered to the cli-ents transparently in an on-demand way.Failures can happen in CC environment and the cloud resources are adaptable tofluctuations in the performance...In cloud computing(CC),resources are allocated and offered to the cli-ents transparently in an on-demand way.Failures can happen in CC environment and the cloud resources are adaptable tofluctuations in the performance delivery.Task execution failure becomes common in the CC environment.Therefore,fault-tolerant scheduling techniques in CC environment are essential for handling performance differences,resourcefluxes,and failures.Recently,several intelli-gent scheduling approaches have been developed for scheduling tasks in CC with no consideration of fault tolerant characteristics.With this motivation,this study focuses on the design of Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme(GTO-FTASS)in CC environment.The proposed GTO-FTASS model aims to schedule the tasks and allocate resources by considering fault tolerance into account.The GTO-FTASS algorithm is based on the social intelligence nature of gorilla troops.Besides,the GTO-FTASS model derives afitness function involving two parameters such as expected time of completion(ETC)and failure probability of executing a task.In addition,the presented fault detector can trace the failed tasks or VMs and then schedule heal submodule in sequence with a remedial or retrieval scheduling model.The experimental vali-dation of the GTO-FTASS model has been performed and the results are inspected under several aspects.Extensive comparative analysis reported the better outcomes of the GTO-FTASS model over the recent approaches.展开更多
In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many ...In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected.展开更多
Switched reluctance motor power converters are prone to open-circuit faults because it need to withstand large voltages and currents.Due to the small number of traditional asymmetrical half bridge topology switches,it...Switched reluctance motor power converters are prone to open-circuit faults because it need to withstand large voltages and currents.Due to the small number of traditional asymmetrical half bridge topology switches,it is difficult to carry out fault tolerant control when power converters has an open-circuit fault,resulting in larger output torque ripple.This paper presents a five-level power converter based on the traditional asymmetric half-bridge power converter.The five-level topology has more switching states and can work in multi-level mode.Based on the topology,different excitation and demagnetization voltages can be choose at different speeds.A fault-tolerance strategy is developed to decrease the influence of the open-circuit fault.The five-level power converter has four switches per phase,and two of them will be used in one of the operating mode.So the remaining two of the switches can be used for safe backup,enabling fault-tolerant control when an open-circuit occur.Since each phase of the five-level power converter proposed in this paper is independent of each other,a reasonable control strategy can be used to avoid the unbalance of the midpoint potential.Finally,the topology and fault-tolerant strategy proposed in this paper are verified by simulation and experiment.展开更多
A new fault-tolerant control scheme is proposed for a nonlinear collaborative system that contains two robot subsystems. When fault occurs in one subsystem, the fault-free subsystem is used to compensate the fault inf...A new fault-tolerant control scheme is proposed for a nonlinear collaborative system that contains two robot subsystems. When fault occurs in one subsystem, the fault-free subsystem is used to compensate the fault influence of the faulty one on the whole collaborative system. When the faulty subsystem could not repair itself or the repair process needs a long time, the controller of the fault-free subsystem is reconfigured using the fault diagnosis information and other measured infor- mation, leading to the fault tolerant control of the robot collaborative system. Simulations of fault tolerant control for the robot collaborative system show the effectiveness of the proposed method.展开更多
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies ...With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples.展开更多
This study conducts a systematic literature review(SLR)of blockchain consensus mechanisms,an essential protocols that maintain the integrity,reliability,and decentralization of distributed ledger networks.The aim is t...This study conducts a systematic literature review(SLR)of blockchain consensus mechanisms,an essential protocols that maintain the integrity,reliability,and decentralization of distributed ledger networks.The aim is to comprehensively investigate prominent mechanisms’security features and vulnerabilities,emphasizing their security considerations,applications,challenges,and future directions.The existing literature offers valuable insights into various consensus mechanisms’strengths,limitations,and security vulnerabilities and their real-world applications.However,there remains a gap in synthesizing and analyzing this knowledge systematically.Addressing this gap would facilitate a structured approach to understanding consensus mechanisms’security and vulnerabilities comprehensively.The study adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines and computer science standards and reviewed 3749 research papers from 2016 to 2024,excluding grey literature,resulting in 290 articles for descriptive analysis.The research highlights an increased focus on blockchain consensus security,energy efficiency,and hybrid mechanisms within 60%of research papers post-2019,identifying gaps in scalability,privacy,and interoperability for future exploration.By synthesizing the existing research and identifying the key trends,this SLR contributes to advancing the understanding of blockchain consensus mechanisms’security and guiding future research and structured innovation in blockchain systems and applications.展开更多
The command tracking problem of formation flight control system(FFCS)for multiple unmanned aerial vehicles(UAVs)with sensor faults is discussed.And the objective of the addressed control problem is to design a robust ...The command tracking problem of formation flight control system(FFCS)for multiple unmanned aerial vehicles(UAVs)with sensor faults is discussed.And the objective of the addressed control problem is to design a robust fault tolerant tracking controller such that,for the disturbances and sensor faults,the closed-loop system is asymptotically stable with a given disturbance attenuation level.A robust fault tolerant tracking control scheme,combining an observer with H∞ performance,is proposed.Furthermore,it is proved that the designed controller can guarantee asymptotic stability of FFCS despite sensor faults.Finally,a simulation of two UAV formations is employed to demonstrate the effectiveness of the proposed approach.展开更多
An integrated fault tolerant approach for data encryption and digitalsignature based on elliptic curve cryptography is proposed. Phis approach allows the receiver toverify the sender's identity and can simultaneou...An integrated fault tolerant approach for data encryption and digitalsignature based on elliptic curve cryptography is proposed. Phis approach allows the receiver toverify the sender's identity and can simultaneously deal with error detection and data correction.Up to three errors in our approach can be detected and corrected. This approach has at least thesame security as that based on RSA system, but smaller keys to achieve the same level of security.Our approach is more efficient than the known ones and more suited for limited environments likepersonal digital assistants (PDAs), mobile phones and smart cards without RSA co-processors.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.51975294)Fundamental Research Funds for the Central Universities of China (Grant No.30922010706)。
文摘Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.
基金supported by the Innovation Fund Project of Jiangxi Normal University(YJS2022065)the Domestic Visiting Program of Jiangxi Normal University.
文摘Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
基金supported by Research and Application of Edge IoT Technology for Distributed New Energy Consumption in Distribution Areas,Project Number(5108-202218280A-2-394-XG)。
文摘For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states.
文摘In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation results show that this neural approach for data fusion is feasible.
基金Natural Science Foundation of Gansu Province(Joint)Project(No.213244)Natural Science Foundation of Gansu Province(No.145RJZA136)Youth Science Foundation of Lanzhou Jiaotong University(No.2013040)
文摘In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is single or two-current sensor fault occurs,based on the proposed method the missing current information can be reconstructed by using direct current(DC)bus current sensor and the three-phase current can be updated in time within any two adjacent sampling periods,so as to ensure stability of the closed-loop system.And then the switchover and fault tolerant control of fault current sensor would be accomplished by fault diagnosis method based on adaptive threshold judgment.For the reconstructed signal error caused by the modulation method and the main control target of electric pitch system,a variable universe fuzzy control method is used in the speed loop,which can improve the anti-disturbance ability to load variation,and the robustness of fault tolerance system.The results show that the fault tolerant control method makes the variable pitch control system still has ideal control characteristics in case of sensor failure although part of the system performance is lost,thus the correctness of the proposed method is verified.
基金supported in part by the National Natural ScienceFoundation of China(61533017,61973330,61773075,61603387)the Early Career Development Award of SKLMCCS(20180201)the State Key Laboratory of Synthetical Automation for Process Industries(2019-KF-23-03)。
文摘In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swarm optimization(PSO) is constructed to model the unknown system dynamics. By utilizing the estimated system states, the particle swarm optimized critic neural network(PSOCNN) is employed to solve the Hamilton-Jacobi-Bellman equation(HJBE) more efficiently.Then, a data-based FTC scheme, which consists of the NN identifier and the fault compensator, is proposed to achieve actuator fault tolerance. The stability of the closed-loop system under actuator faults is guaranteed by the Lyapunov stability theorem. Finally, simulations are provided to demonstrate the effectiveness of the developed method.
基金supported by National Natural Science Foundation of China (No. 60874052)
文摘In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system model.Packet loss dependent Lyapunov function is used and a fault tolerant controller is proposed respectively for arbitrary packet loss process and Markovian packet loss process.Considering a controlled plant with external energy-bounded disturbance,a robust H ∞ fault tolerant controller is designed for the NCS.These results are also expanded to the NCS with packet loss and networked-induced delay.Numerical examples are given to illustrate the effectiveness of the proposed design method.
基金Supported by National Natural Science Foundation of P.R.China (60574083)Key Laboratory of Process Industry Automation, Ministry of Education of P.R.China (PAL200514)Innovation Scientific Fund of Nanjing University of Aeronautics and Astronautics (Y0508-031)
文摘A model-based fault tolerant control approach for hybrid linear dynamic systems is proposed in this paper. The proposed method, taking advantage of reliable control, can maintain the performance of the faulty system during the time delay of fault detection and diagnosis (FDD) and fault accommodation (FA), which can be regarded as the first line of defence against sensor faults. Simulation results of a three-tank system with sensor fault are given to show the efficiency of the method.
基金supported by the Key Laboratory of Network Password Technology in Henan Province,China(LNCT2022-A20)the Major Science and Technology Special Project of Henan Province,China(Nos.201300210100,201300210200)+2 种基金the Key Scientific Research Project of Higher Education Institutions in Henan Province,China(No.23ZX017)the Key Special Project for Science and Technology Collaborative Innovation in Zhengzhou City,Henan Province,China(No.21ZZXTCX07)and the Key Science and Technology Project of Henan Province,China(No.232102211082).
文摘The consensus protocol is one of the core technologies in blockchain,which plays a crucial role in ensuring the block generation rate,consistency,and safety of the blockchain system.Blockchain systems mainly adopt the Byzantine Fault Tolerance(BFT)protocol,which often suffers fromslow consensus speed and high communication consumption to prevent Byzantine nodes from disrupting the consensus.In this paper,this paper proposes a new dual-mode consensus protocol based on node identity authentication.It divides the consensus process into two subprotocols:Check_BFT and Fast_BFT.In Check_BFT,the replicas authenticate the primary’s identity by monitoring its behaviors.First,assume that the systemis in a pessimistic environment,Check_BFT protocol detects whether the current environment is safe and whether the primary is an honest node;Enter the fast consensus stage after confirming the environmental safety,and implement Fast_BFT protocol.It is assumed that there are 3f+1 nodes in total.If more than 2f+1 nodes identify that the primary is honest,it will enter the Fast_BFT process.In Fast_BFT,the primary is allowed to handle transactions alone,and the replicas can only receive the messages sent by the primary.The experimental results show that the CF-BFT protocol significantly reduces the communication overhead and improves the throughput and scalability of the consensus protocol.Compared with the SAZyzz protocol,the throughput is increased by 3 times in the best case and 60%in the worst case.
文摘In cloud computing(CC),resources are allocated and offered to the cli-ents transparently in an on-demand way.Failures can happen in CC environment and the cloud resources are adaptable tofluctuations in the performance delivery.Task execution failure becomes common in the CC environment.Therefore,fault-tolerant scheduling techniques in CC environment are essential for handling performance differences,resourcefluxes,and failures.Recently,several intelli-gent scheduling approaches have been developed for scheduling tasks in CC with no consideration of fault tolerant characteristics.With this motivation,this study focuses on the design of Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme(GTO-FTASS)in CC environment.The proposed GTO-FTASS model aims to schedule the tasks and allocate resources by considering fault tolerance into account.The GTO-FTASS algorithm is based on the social intelligence nature of gorilla troops.Besides,the GTO-FTASS model derives afitness function involving two parameters such as expected time of completion(ETC)and failure probability of executing a task.In addition,the presented fault detector can trace the failed tasks or VMs and then schedule heal submodule in sequence with a remedial or retrieval scheduling model.The experimental vali-dation of the GTO-FTASS model has been performed and the results are inspected under several aspects.Extensive comparative analysis reported the better outcomes of the GTO-FTASS model over the recent approaches.
文摘In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected.
文摘Switched reluctance motor power converters are prone to open-circuit faults because it need to withstand large voltages and currents.Due to the small number of traditional asymmetrical half bridge topology switches,it is difficult to carry out fault tolerant control when power converters has an open-circuit fault,resulting in larger output torque ripple.This paper presents a five-level power converter based on the traditional asymmetric half-bridge power converter.The five-level topology has more switching states and can work in multi-level mode.Based on the topology,different excitation and demagnetization voltages can be choose at different speeds.A fault-tolerance strategy is developed to decrease the influence of the open-circuit fault.The five-level power converter has four switches per phase,and two of them will be used in one of the operating mode.So the remaining two of the switches can be used for safe backup,enabling fault-tolerant control when an open-circuit occur.Since each phase of the five-level power converter proposed in this paper is independent of each other,a reasonable control strategy can be used to avoid the unbalance of the midpoint potential.Finally,the topology and fault-tolerant strategy proposed in this paper are verified by simulation and experiment.
基金Supported by the National Natural Science Foundation of China (61104022, 10971202)the Science and Technology Research Key Program of Henan Educational Committee(12A120009)
文摘A new fault-tolerant control scheme is proposed for a nonlinear collaborative system that contains two robot subsystems. When fault occurs in one subsystem, the fault-free subsystem is used to compensate the fault influence of the faulty one on the whole collaborative system. When the faulty subsystem could not repair itself or the repair process needs a long time, the controller of the fault-free subsystem is reconfigured using the fault diagnosis information and other measured infor- mation, leading to the fault tolerant control of the robot collaborative system. Simulations of fault tolerant control for the robot collaborative system show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.
基金supported in part by Shenzhen Key Laboratory of Control Theory and Intelligent Systems (ZDSYS20220330161800001)the National Natural Science Foundation of China (62173255, 62188101)。
文摘With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples.
基金funded by Universiti Teknologi PETRONAS and grants(YUTP-PRG:015PBC-011).
文摘This study conducts a systematic literature review(SLR)of blockchain consensus mechanisms,an essential protocols that maintain the integrity,reliability,and decentralization of distributed ledger networks.The aim is to comprehensively investigate prominent mechanisms’security features and vulnerabilities,emphasizing their security considerations,applications,challenges,and future directions.The existing literature offers valuable insights into various consensus mechanisms’strengths,limitations,and security vulnerabilities and their real-world applications.However,there remains a gap in synthesizing and analyzing this knowledge systematically.Addressing this gap would facilitate a structured approach to understanding consensus mechanisms’security and vulnerabilities comprehensively.The study adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines and computer science standards and reviewed 3749 research papers from 2016 to 2024,excluding grey literature,resulting in 290 articles for descriptive analysis.The research highlights an increased focus on blockchain consensus security,energy efficiency,and hybrid mechanisms within 60%of research papers post-2019,identifying gaps in scalability,privacy,and interoperability for future exploration.By synthesizing the existing research and identifying the key trends,this SLR contributes to advancing the understanding of blockchain consensus mechanisms’security and guiding future research and structured innovation in blockchain systems and applications.
基金supported in part by the Post Doctoral Research Foundation of Jiangsu Province(No.1701140B)the National Natural Science Foundation of China (No. 61403195)the GF Research and Development Project of the Nanjing Tech Universities(No.201709)
文摘The command tracking problem of formation flight control system(FFCS)for multiple unmanned aerial vehicles(UAVs)with sensor faults is discussed.And the objective of the addressed control problem is to design a robust fault tolerant tracking controller such that,for the disturbances and sensor faults,the closed-loop system is asymptotically stable with a given disturbance attenuation level.A robust fault tolerant tracking control scheme,combining an observer with H∞ performance,is proposed.Furthermore,it is proved that the designed controller can guarantee asymptotic stability of FFCS despite sensor faults.Finally,a simulation of two UAV formations is employed to demonstrate the effectiveness of the proposed approach.
基金Supported by the National Natural Science Funda tion of China (90204012)
文摘An integrated fault tolerant approach for data encryption and digitalsignature based on elliptic curve cryptography is proposed. Phis approach allows the receiver toverify the sender's identity and can simultaneously deal with error detection and data correction.Up to three errors in our approach can be detected and corrected. This approach has at least thesame security as that based on RSA system, but smaller keys to achieve the same level of security.Our approach is more efficient than the known ones and more suited for limited environments likepersonal digital assistants (PDAs), mobile phones and smart cards without RSA co-processors.