Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the mil...Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.展开更多
In this paper, we make a statistical analysis of the fault information of the underground fluid instruments of 12 models in China from January 2021 to May 2022 based on the Pearson correlation coefficient, and compare...In this paper, we make a statistical analysis of the fault information of the underground fluid instruments of 12 models in China from January 2021 to May 2022 based on the Pearson correlation coefficient, and compare the fault statistics of the meteorological three-element instruments of 3 models during the study period. The results show that:(1) The numbers of faults of the underground fluid instruments of 12models with different service times are basically positively correlated with the numbers of the corresponding instruments, with good consistency. Moreover, the automatic observation instruments(8models) with more than 30 units are significantly correlated at a 0.05 significance level(95% confidence level). Even at a 0.01 significance level(99% confidence level), there are 7 models(7/8) with significant correlation.(2) The positive and negative correlations between the monthly average number of faults and the corresponding service times of the underground fluid instruments of 12 models with different service times are random, and there are 9 models(75%) with no significant correlation at a 0.05 significance level(95% confidence level), while 12 models(100%) with no significant correlation at a 0.01significance level(99% confidence level).(3) The monthly average numbers of faults of the underground fluid instruments of 12 models are basically 0.02-0.05 times/(unit·month), and the overall fault frequency is low.(4) The fault statistics results of the meteorological three-element instruments of 3 models are consistent with the characteristics of the underground fluid instruments of 12 models. In general,there is no significant correlation between the fault frequency and the service time of underground fluid instruments.(5) The results of this paper demonstrate that the service time of underground fluid instruments cannot be taken as the main reason for whether to update the instruments. Similarly, the fault frequency of the instruments cannot be taken as the main reason for the service life of the instruments in the process of formulating the service life standards of underground fluid instruments.展开更多
SKINNY-64-64 is a lightweight block cipher with a 64-bit block length and key length,and it is mainly used on the Internet of Things(IoT).Currently,faults can be injected into cryptographic devices by attackers in a v...SKINNY-64-64 is a lightweight block cipher with a 64-bit block length and key length,and it is mainly used on the Internet of Things(IoT).Currently,faults can be injected into cryptographic devices by attackers in a variety of ways,but it is still difficult to achieve a precisely located fault attacks at a low cost,whereas a Hardware Trojan(HT)can realize this.Temperature,as a physical quantity incidental to the operation of a cryptographic device,is easily overlooked.In this paper,a temperature-triggered HT(THT)is designed,which,when activated,causes a specific bit of the intermediate state of the SKINNY-64-64 to be flipped.Further,in this paper,a THT-based algebraic fault analysis(THT-AFA)method is proposed.To demonstrate the effectiveness of the method,experiments on algebraic fault analysis(AFA)and THT-AFA have been carried out on SKINNY-64-64.In the THT-AFA for SKINNY-64-64,it is only required to activate the THT 3 times to obtain the master key with a 100%success rate,and the average time for the attack is 64.57 s.However,when performing AFA on this cipher,we provide a relation-ship between the number of different faults and the residual entropy of the key.In comparison,our proposed THT-AFA method has better performance in terms of attack efficiency.To the best of our knowledge,this is the first HT attack on SKINNY-64-64.展开更多
Based on the structure and working principle of rain sensors in new automatic weather stations,according to the abnormal precipitation records found in the observation business,the possible faults of rain sensors were...Based on the structure and working principle of rain sensors in new automatic weather stations,according to the abnormal precipitation records found in the observation business,the possible faults of rain sensors were analyzed,and treatment methods were discussed. Daily maintenance and management measures were put forward to ensure the normal operation of rain sensors and improve the quality of surface meteorological observation business.展开更多
Innovations for electric vehicles have advanced quickly in latest decades. Large-scale business use of these vehicles is still constrained by reliability-related issues. By utilising fault tree (FT) and Monte Carlo si...Innovations for electric vehicles have advanced quickly in latest decades. Large-scale business use of these vehicles is still constrained by reliability-related issues. By utilising fault tree (FT) and Monte Carlo simulation, a mathematical prototype is created that includes the reliability traits of all major electrical parts of the vehicle system, including the battery, motor, drive, controllers. The research demonstrates that by raising the component restoration rates, the vehicle’s survivability can be raised. A thorough discussion of this paradigm is provided, along with a presentation and analysis of the reliability estimations based on an electric vehicle. This research on the reliability design and maintenance of an electric vehicle can be supported by the ideas that are outlined in the paper. Additionally, the findings of this study may be helpful to those who build electric vehicle, especially when upgrading the components efficiency and planning for reliability increase.展开更多
Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack...Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack of interpretability of“black box”,which limits its deployment in safety-critical applications.A trusted fault diagnosis system requires that the faults can be accurately diagnosed in most cases,and the human in the deci-sion-making loop can be found to deal with the abnormal situa-tion when the models fail.In this paper,we explore a simplified method for quantifying both aleatoric and epistemic uncertainty in deterministic networks,called SAEU.In SAEU,Multivariate Gaussian distribution is employed in the deep architecture to compensate for the shortcomings of complexity and applicability of Bayesian neural networks.Based on the SAEU,we propose a unified uncertainty-aware deep learning framework(UU-DLF)to realize the grand vision of trustworthy fault diagnosis.Moreover,our UU-DLF effectively embodies the idea of“humans in the loop”,which not only allows for manual intervention in abnor-mal situations of diagnostic models,but also makes correspond-ing improvements on existing models based on traceability analy-sis.Finally,two experiments conducted on the gearbox and aero-engine bevel gears are used to demonstrate the effectiveness of UU-DLF and explore the effective reasons behind.展开更多
This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the co...This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the common faults on shuttle car,this paper concludes that"internal holding torque"is the main cause of faults.Finally,this paper proposes a corresponding optimization design scheme to reduce the impact of"internal torque",and calculates the relevant results through the finite element simulation analysis method.Through these analyses and calculations,it is shown that the method can effectively reduce the probability of failure of traveling transmission system of shuttle car.展开更多
The Guxiang-Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet.It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the...The Guxiang-Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet.It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the examination of seismic activity within the eastern Himalayan Syntaxis.New study in the research region has yielded a 1:200000 gravity dataset covering an area 1500 km^(2).Using wavelet transform multiscale decomposition,scratch analysis techniques,and 3D gravity inversion methods,gravity anomalies,fault distributions,and density structures were determined across various scales.Through the integration of our new gravity data with other geophysical and geological information,our findings demonstrate substantial variations in the overall crustal density within the region,with the fault distribution closely linked to these density fluctuations.Disparities in stratigraphic density are important causes of variations in the capacity of geological formations to endure regional tectonic stress.Earthquakes are predominantly concentrated within the density transition zone and are primarily situated in regions of elevated density.The hanging wall stress within the Guxiang-Tongmai segment of the Jiali fault exhibits a notable concentration,marked by pronounced anisotropy,and is positioned within the density differential zone,which is prone to earthquakes.展开更多
Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operation...Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operations. Current understanding supports the overriding role of the effective stress magnitude in triggering earthquakes, while the impact of change rate of effective stress has not been systematically addressed. In this work, a modified critical stiffness was brought up to investigate the likelihood, impact,and mitigation of induced seismicity during and after hydraulic fracturing by developing a poroelastic model based on rate-and-state fraction law and linear stability analysis. In the new criterion, the change rate of effective stress was considered a key variable to explore the evolution of this criterion and hence the likelihood of instability slip of fault. A coupled fluid flow-deformation model was used to represent the entire hydraulic fracturing process in COMSOL Multiphysics. The possibility of triggering an earthquake throughout the entire hydraulic fracturing process, from fracturing to cessation, was investigated considering different fault locations, orientations, and positions along the fault. The competition between the effects of the magnitude and change rate of effective stress was notable at each fracturing stage. The effective stress magnitude is a significant controlling factor during fracturing events, with the change rate dominating when fracturing is suddenly started or stopped. Instability dominates when the magnitude of the effective stress increases(constant injection at each fracturing stage) and the change rate of effective stress decreases(the injection process is suddenly stopped). Fracturing with a high injection rate, a fault adjacent to the hydraulic fracturing location and the position of the junction between the reservoir and fault are important to reduce the Coulomb failure stress(CFS) and enhance the critical stiffness as the significant disturbance of stresses at these positions in the coupled process. Therefore,notable attention should be given to the injection rate during fracturing, fault position, and position along faults as important considerations to help reduce the potential for induced seismicity. Our model was verified and confirmed using the case of the Longmaxi Formation in the Sichuan Basin, China, in which the reported microseismic data were correlated with high critical stiffness values. This work supplies new thoughts of the seismic risk associated with HF engineering.展开更多
Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In ...Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift.展开更多
In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The pape...In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method.展开更多
Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type...Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type and grey reference sequence structure, some typicalfault samples are divided into several sets of grey reference sequences. These sets are structuredas one grey reference sequence group. Secondly, according to a new calculation method of the greyrelational coefficient, the individual relational coefficient and grade are computed. Then accordingto the given calculation method for the group grey relation grade, the group grey relational gradeis computed and the group grey relational grade matrix is structured. Finally, according to therelational sequence, the insulation fault is identified for power transformers. The results of alarge quantity of instant analyses show that the proposed method has higher diagnosis accuracy andreliability than the three-ratio method and the traditional grey relational method. It has goodclassified diagnosis ability and reliability.展开更多
This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic ...This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic events are also solved by the method. Computer simulations show that the algorithm performs very well.展开更多
A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines an...A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines and review of a great amount of relevant展开更多
During the past decade, coal dust and gas explosions have been the most two serious types of disasters in China, threatening the lives of miners and causing significant losses in terms of national property. In this pa...During the past decade, coal dust and gas explosions have been the most two serious types of disasters in China, threatening the lives of miners and causing significant losses in terms of national property. In this paper, an evaluation model of coal dust and gas explosions was constructed based on a fuzzy fault tree by taking the Xingli Coal Mine as a research site to identify the risk factors of coal dust and gas explosions.Furthermore, the hazards associated with such explosions were evaluated for this particular coal mine.After completing an on-site investigation, the fuzzy probabilities of basic events were obtained through expert scoring, and these expert opinions were then aggregated as trapezoidal fuzzy numbers to calculate the degrees of importance of all basic events. Finally, these degrees of importance were sorted. According to the resulting order, the basic events with higher probabilities were determined to identify key hazards in the daily safety management of this particular coal mine. Moreover, effective measures for preventing gas and coal dust explosions were derived. The fuzzy fault tree analysis method is of high significance in the analysis of accidental coal mine explosions and provides theoretical guidance for improving the efficiency of coal mine safety management in a scientific and feasible manner.展开更多
Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode che...Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.展开更多
A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacem...A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacement discontinuity method (DDM) program. The Bar- ton-Bandis model and the Kulhaway model are adopted as the normal and the tangential deformation model of faults, respectively, where the Mohr-Coulomb failure criterion is satisfied. In practical projects, the values of the mechanical parameters of rock and faults are restricted in a bounded range for in-situ test, and the optimal mechanical parameters are obtained from this range by a loop. Comparing with the traditional finite element method (FEM), the DDM regression results are more accurate.展开更多
基金This work was supported in part by the Natural Science Foundation of China under Grant 62203461 and Grant 62203365in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736+3 种基金in part by the Teaching reform project of higher education in Heilongjiang Province under Grant Nos.SJGY20210456 and SJGY20210457in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038in part by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 andHSDSSCX2022-19in part by the Foreign Expert Project of Heilongjiang Province under Grant No.GZ20220131.
文摘Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.
基金supported by the Science Project for Earthquake Resilience of China Earthquake Administration(XH22020YA).
文摘In this paper, we make a statistical analysis of the fault information of the underground fluid instruments of 12 models in China from January 2021 to May 2022 based on the Pearson correlation coefficient, and compare the fault statistics of the meteorological three-element instruments of 3 models during the study period. The results show that:(1) The numbers of faults of the underground fluid instruments of 12models with different service times are basically positively correlated with the numbers of the corresponding instruments, with good consistency. Moreover, the automatic observation instruments(8models) with more than 30 units are significantly correlated at a 0.05 significance level(95% confidence level). Even at a 0.01 significance level(99% confidence level), there are 7 models(7/8) with significant correlation.(2) The positive and negative correlations between the monthly average number of faults and the corresponding service times of the underground fluid instruments of 12 models with different service times are random, and there are 9 models(75%) with no significant correlation at a 0.05 significance level(95% confidence level), while 12 models(100%) with no significant correlation at a 0.01significance level(99% confidence level).(3) The monthly average numbers of faults of the underground fluid instruments of 12 models are basically 0.02-0.05 times/(unit·month), and the overall fault frequency is low.(4) The fault statistics results of the meteorological three-element instruments of 3 models are consistent with the characteristics of the underground fluid instruments of 12 models. In general,there is no significant correlation between the fault frequency and the service time of underground fluid instruments.(5) The results of this paper demonstrate that the service time of underground fluid instruments cannot be taken as the main reason for whether to update the instruments. Similarly, the fault frequency of the instruments cannot be taken as the main reason for the service life of the instruments in the process of formulating the service life standards of underground fluid instruments.
基金supported in part by the Natural Science Foundation of Heilongjiang Province of China(Grant No.LH2022F053)in part by the Scientific and technological development project of the central government guiding local(Grant No.SBZY2021E076)+2 种基金in part by the PostdoctoralResearch Fund Project of Heilongjiang Province of China(Grant No.LBH-Q21195)in part by the Fundamental Research Funds of Heilongjiang Provincial Universities of China(Grant No.145209146)in part by the National Natural Science Foundation of China(NSFC)(Grant No.61501275).
文摘SKINNY-64-64 is a lightweight block cipher with a 64-bit block length and key length,and it is mainly used on the Internet of Things(IoT).Currently,faults can be injected into cryptographic devices by attackers in a variety of ways,but it is still difficult to achieve a precisely located fault attacks at a low cost,whereas a Hardware Trojan(HT)can realize this.Temperature,as a physical quantity incidental to the operation of a cryptographic device,is easily overlooked.In this paper,a temperature-triggered HT(THT)is designed,which,when activated,causes a specific bit of the intermediate state of the SKINNY-64-64 to be flipped.Further,in this paper,a THT-based algebraic fault analysis(THT-AFA)method is proposed.To demonstrate the effectiveness of the method,experiments on algebraic fault analysis(AFA)and THT-AFA have been carried out on SKINNY-64-64.In the THT-AFA for SKINNY-64-64,it is only required to activate the THT 3 times to obtain the master key with a 100%success rate,and the average time for the attack is 64.57 s.However,when performing AFA on this cipher,we provide a relation-ship between the number of different faults and the residual entropy of the key.In comparison,our proposed THT-AFA method has better performance in terms of attack efficiency.To the best of our knowledge,this is the first HT attack on SKINNY-64-64.
文摘Based on the structure and working principle of rain sensors in new automatic weather stations,according to the abnormal precipitation records found in the observation business,the possible faults of rain sensors were analyzed,and treatment methods were discussed. Daily maintenance and management measures were put forward to ensure the normal operation of rain sensors and improve the quality of surface meteorological observation business.
文摘Innovations for electric vehicles have advanced quickly in latest decades. Large-scale business use of these vehicles is still constrained by reliability-related issues. By utilising fault tree (FT) and Monte Carlo simulation, a mathematical prototype is created that includes the reliability traits of all major electrical parts of the vehicle system, including the battery, motor, drive, controllers. The research demonstrates that by raising the component restoration rates, the vehicle’s survivability can be raised. A thorough discussion of this paradigm is provided, along with a presentation and analysis of the reliability estimations based on an electric vehicle. This research on the reliability design and maintenance of an electric vehicle can be supported by the ideas that are outlined in the paper. Additionally, the findings of this study may be helpful to those who build electric vehicle, especially when upgrading the components efficiency and planning for reliability increase.
基金supported in part by the National Natural Science Foundation of China(52105116)Science Center for gas turbine project(P2022-DC-I-003-001)the Royal Society award(IEC\NSFC\223294)to Professor Asoke K.Nandi.
文摘Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack of interpretability of“black box”,which limits its deployment in safety-critical applications.A trusted fault diagnosis system requires that the faults can be accurately diagnosed in most cases,and the human in the deci-sion-making loop can be found to deal with the abnormal situa-tion when the models fail.In this paper,we explore a simplified method for quantifying both aleatoric and epistemic uncertainty in deterministic networks,called SAEU.In SAEU,Multivariate Gaussian distribution is employed in the deep architecture to compensate for the shortcomings of complexity and applicability of Bayesian neural networks.Based on the SAEU,we propose a unified uncertainty-aware deep learning framework(UU-DLF)to realize the grand vision of trustworthy fault diagnosis.Moreover,our UU-DLF effectively embodies the idea of“humans in the loop”,which not only allows for manual intervention in abnor-mal situations of diagnostic models,but also makes correspond-ing improvements on existing models based on traceability analy-sis.Finally,two experiments conducted on the gearbox and aero-engine bevel gears are used to demonstrate the effectiveness of UU-DLF and explore the effective reasons behind.
基金supported by the Key Project of China Coal Technology and Engineering Group(No.2020-2-TD-ZD003).
文摘This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the common faults on shuttle car,this paper concludes that"internal holding torque"is the main cause of faults.Finally,this paper proposes a corresponding optimization design scheme to reduce the impact of"internal torque",and calculates the relevant results through the finite element simulation analysis method.Through these analyses and calculations,it is shown that the method can effectively reduce the probability of failure of traveling transmission system of shuttle car.
基金supported by the National Foundation of China(Grant Nos.41941016 and 42174123)China Geological Survey(Grant No.DD20221630).
文摘The Guxiang-Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet.It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the examination of seismic activity within the eastern Himalayan Syntaxis.New study in the research region has yielded a 1:200000 gravity dataset covering an area 1500 km^(2).Using wavelet transform multiscale decomposition,scratch analysis techniques,and 3D gravity inversion methods,gravity anomalies,fault distributions,and density structures were determined across various scales.Through the integration of our new gravity data with other geophysical and geological information,our findings demonstrate substantial variations in the overall crustal density within the region,with the fault distribution closely linked to these density fluctuations.Disparities in stratigraphic density are important causes of variations in the capacity of geological formations to endure regional tectonic stress.Earthquakes are predominantly concentrated within the density transition zone and are primarily situated in regions of elevated density.The hanging wall stress within the Guxiang-Tongmai segment of the Jiali fault exhibits a notable concentration,marked by pronounced anisotropy,and is positioned within the density differential zone,which is prone to earthquakes.
基金funded by the joint fund of the National Key Research and Development Program of China(No.2021YFC2902101)National Natural Science Foundation of China(Grant No.52374084)+1 种基金Open Foundation of National Energy shale gas R&D(experiment) center(2022-KFKT-12)the 111 Project(B17009)。
文摘Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operations. Current understanding supports the overriding role of the effective stress magnitude in triggering earthquakes, while the impact of change rate of effective stress has not been systematically addressed. In this work, a modified critical stiffness was brought up to investigate the likelihood, impact,and mitigation of induced seismicity during and after hydraulic fracturing by developing a poroelastic model based on rate-and-state fraction law and linear stability analysis. In the new criterion, the change rate of effective stress was considered a key variable to explore the evolution of this criterion and hence the likelihood of instability slip of fault. A coupled fluid flow-deformation model was used to represent the entire hydraulic fracturing process in COMSOL Multiphysics. The possibility of triggering an earthquake throughout the entire hydraulic fracturing process, from fracturing to cessation, was investigated considering different fault locations, orientations, and positions along the fault. The competition between the effects of the magnitude and change rate of effective stress was notable at each fracturing stage. The effective stress magnitude is a significant controlling factor during fracturing events, with the change rate dominating when fracturing is suddenly started or stopped. Instability dominates when the magnitude of the effective stress increases(constant injection at each fracturing stage) and the change rate of effective stress decreases(the injection process is suddenly stopped). Fracturing with a high injection rate, a fault adjacent to the hydraulic fracturing location and the position of the junction between the reservoir and fault are important to reduce the Coulomb failure stress(CFS) and enhance the critical stiffness as the significant disturbance of stresses at these positions in the coupled process. Therefore,notable attention should be given to the injection rate during fracturing, fault position, and position along faults as important considerations to help reduce the potential for induced seismicity. Our model was verified and confirmed using the case of the Longmaxi Formation in the Sichuan Basin, China, in which the reported microseismic data were correlated with high critical stiffness values. This work supplies new thoughts of the seismic risk associated with HF engineering.
基金funded by the National Natural Science Foundation of China(No.U21B2063)the Science and Technology Department of China Petrochemical Corporation(Sinopec)(No.P21086-3,No.P22122).
文摘Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift.
文摘In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method.
文摘Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type and grey reference sequence structure, some typicalfault samples are divided into several sets of grey reference sequences. These sets are structuredas one grey reference sequence group. Secondly, according to a new calculation method of the greyrelational coefficient, the individual relational coefficient and grade are computed. Then accordingto the given calculation method for the group grey relation grade, the group grey relational gradeis computed and the group grey relational grade matrix is structured. Finally, according to therelational sequence, the insulation fault is identified for power transformers. The results of alarge quantity of instant analyses show that the proposed method has higher diagnosis accuracy andreliability than the three-ratio method and the traditional grey relational method. It has goodclassified diagnosis ability and reliability.
文摘This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic events are also solved by the method. Computer simulations show that the algorithm performs very well.
文摘A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines and review of a great amount of relevant
基金supported by the National Natural Science Foundation of China (Nos.51504008,71371014,and 51774012)the Natural Science Foundation of Anhui Higher Education Institutions of China (No.KJ2015A068)+3 种基金the Anhui Provincial Natural Science Foundation (No.1608085QE115)the China Postdoctoral Science Foundation funded project (Nos.2015M571913 and 2018T110612)the Postdoctoral Fund of Anhui Province (No.2017B212)the Scientific Research Foundation for Introduction of Talent of Anhui University of Science & Technology (No.ZY530)
文摘During the past decade, coal dust and gas explosions have been the most two serious types of disasters in China, threatening the lives of miners and causing significant losses in terms of national property. In this paper, an evaluation model of coal dust and gas explosions was constructed based on a fuzzy fault tree by taking the Xingli Coal Mine as a research site to identify the risk factors of coal dust and gas explosions.Furthermore, the hazards associated with such explosions were evaluated for this particular coal mine.After completing an on-site investigation, the fuzzy probabilities of basic events were obtained through expert scoring, and these expert opinions were then aggregated as trapezoidal fuzzy numbers to calculate the degrees of importance of all basic events. Finally, these degrees of importance were sorted. According to the resulting order, the basic events with higher probabilities were determined to identify key hazards in the daily safety management of this particular coal mine. Moreover, effective measures for preventing gas and coal dust explosions were derived. The fuzzy fault tree analysis method is of high significance in the analysis of accidental coal mine explosions and provides theoretical guidance for improving the efficiency of coal mine safety management in a scientific and feasible manner.
基金Supported by the National Natural Science Foundation of China(61273160,61403418)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(10CX04046A)the Doctoral Fund of Shandong Province(BS2012ZZ011)
文摘Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.
基金financially supported by the Western Transport Technical Project of the Ministry of Transport, China (No. 2009318000046)
文摘A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacement discontinuity method (DDM) program. The Bar- ton-Bandis model and the Kulhaway model are adopted as the normal and the tangential deformation model of faults, respectively, where the Mohr-Coulomb failure criterion is satisfied. In practical projects, the values of the mechanical parameters of rock and faults are restricted in a bounded range for in-situ test, and the optimal mechanical parameters are obtained from this range by a loop. Comparing with the traditional finite element method (FEM), the DDM regression results are more accurate.