期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Theoretical exploration of water injection gravity flooding oil in ultra-deep fault-controlled fractured-cavity carbonate reservoirs
1
作者 YANG Xuewen WANG Rujun +3 位作者 DENG Xingliang LI Shiyin ZHANG Hui YAO Chao 《Petroleum Exploration and Development》 CSCD 2022年第1期133-143,共11页
Based on the analysis of geological characteristics of ultra-deep fault-controlled fracture-cavity carbonate reservoirs and division of reservoir units, two physical models were made, and physical simulations of oil d... Based on the analysis of geological characteristics of ultra-deep fault-controlled fracture-cavity carbonate reservoirs and division of reservoir units, two physical models were made, and physical simulations of oil displacement by water injection were carried out to find out water flooding mechanism in the fault-controlled fracture-cavity carbonate reservoir under complex flow state. On this basis, a mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flow has been established. Pilot water injection tests have been carried out to evaluate the effects of enhancing oil recovery by water injection. The results show that: fault-controlled fracture-cavity carbonate reservoir units can be divided into three types:the strong natural energy connected type, the weak natural energy connected type and the weak natural energy isolated type;the fault-fracture activity index of the fault-controlled fractured-cavity body can effectively characterize the connectivity of the reservoir and predict the effective direction of water injection;the mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flows can quantitatively describe the fluid flow law in the fracture-cavity body;the water injected into the fault-controlled fracture-cavity body is weakly affected by the capillary force of the lithologic body, and the oil-water movement is mainly dominated by gravity. The development modes of single well water injection, unit water injection,and single well high pressure water injection proposed based on the connection structure of fracture-cavity space and well storage space configuration are confirmed effective by pilot tests, with obvious water injection gravity flooding effect. 展开更多
关键词 Tarim Basin ORDOVICIAN fault-controlled carbonate reservoir fractured-cavity carbonate reservoir water flooding gravity flooding EOR
下载PDF
Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai,Tahe oilfield,Tarim Basin,NW China 被引量:1
2
作者 ZHANG Wenbiao DUAN Taizhong +3 位作者 LI Meng ZHAO Huawei SHANG Xiaofei WANG Yan 《Petroleum Exploration and Development》 CSCD 2021年第2期367-380,共14页
Based on outcrop,core,logging,seismic and production data,and the formation of fault-controlled karst reservoirs,the types and characterization of Ordovician fault-controlled karst reservoir architectures in the Tuopu... Based on outcrop,core,logging,seismic and production data,and the formation of fault-controlled karst reservoirs,the types and characterization of Ordovician fault-controlled karst reservoir architectures in the Tuoputai area of the Tahe oilfield are studied.According to the concept of genetic geologic body,the fault-controlled karst reservoir is divided into architecture elements of four levels,the strike-slip fault impact zone is the level-1 architecture element,the fault-controlled karst reservoir the level-2 architecture element,the fracture-cave zone(which can be further subdivided into dissolution cave,dissolution pore and vug,and fracture zones)inside the fault-controlled karst reservoir the level-3 architecture element,and fillings inside caves is the level-4 architecture element(which can be further divided based on the filling degree and lithologic types of the fillings).Specific characterization techniques have been optimized according to the characteristics of various architecture elements.The zone impacted by strike-slip fault is characterized by seismic coherence and artificial interpretation.Under the constraint of zone impacted by strike-slip fault,fault likelihood(FL)property is used to characterize the outline of fault-controlled karst reservoir.Under the constraint of fault-controlled karst reservoir outline,the internal structures are divided based on seismic texture attribute.Finally,the cavern filling pattern is interpreted based on drilling and logging data.The fault-controlled karst reservoirs can be interpreted in 3-dimensional space by architecture element levels,and the characterization technology combining log and seismic data for fault-controlled karst reservoir has been worked out,which has complemented the development theory and technologies for this kind of reservoirs in the Tahe oilfield. 展开更多
关键词 fault-controlled karst reservoir architecture characterization strike-slip fault Tahe oilfield ORDOVICIAN
下载PDF
Key oil accumulation periods of ultra-deep fault-controlled oil reservoir in northern Tarim Basin, NW China
3
作者 YANG Shuai WU Guanghui +4 位作者 ZHU Yongfeng ZHANG Yintao ZHAO Xingxing LU Ziye ZHANG Baoshou 《Petroleum Exploration and Development》 CSCD 2022年第2期285-299,共15页
A giant fault-controlled oilfield has been found in the ultra-deep(greater than 6000 m) Ordovician carbonate strata in the northern Tarim Basin. It is of great significance for hydrocarbon accumulation study and oil e... A giant fault-controlled oilfield has been found in the ultra-deep(greater than 6000 m) Ordovician carbonate strata in the northern Tarim Basin. It is of great significance for hydrocarbon accumulation study and oil exploitation to determine the key oil accumulation periods. Based on detailed petrographic analysis, fluid inclusion association(FIA) in calcite samples filling in fractures from 12 wells were analyzed, and key accumulation periods of the strike-slip fault-controlled oilfield was studied by combining oil generation periods of the source rocks, formation periods of the fault and traps, and the fluid inclusion data.(1) There are multiple types of FIA, among them, two types of oil inclusions, the type with yellow fluorescence from the depression area and the type with yellow-green fluorescence from the uplift area with different maturities indicate two oil charging stages.(2) The homogenization temperature of the brine inclusions in FIA is mostly affected by temperature rises, and the minimum temperature of brine inclusions symbiotic with oil inclusions is closer to the reservoir temperature during its forming period.(3) FIA with yellow fluorescence all have homogenization temperatures below 50 ℃, while the FIA with yellow-green fluorescence have homogenization temperatures of 70–90 ℃ tested, suggesting two oil accumulation stages in Middle-Late Caledonian and Late Hercynian.(4) The Middle-Late Ordovician is the key formation period of the strike-slip fault, fracture-cave reservoir and trap there.(5) The oil generation peak of the main source rock of the Lower Cambrian is in the Late Ordovician, and the oil accumulation stage is mainly the Late Ordovician in the depression area, but is mainly the Early Permian in the uplift area. The key oil accumulation period of the strike-slip fault-controlled reservoirs is the Late Caledonian, the depression area has preserved the primary oil reservoirs formed in the Caledonian, while the uplift area has secondary oil reservoirs adjusted from the depression area during the Late Hercynian. Oil reservoir preservation conditions are the key factor for oil enrichment in the strike-slip fault zone of northern Tarim, and the Aman transition zone in the depression is richer in oil and gas and has greater potential for exploration and development. 展开更多
关键词 ultra-deep strata strike-slip fault-controlled oil reservoir accumulation period accumulation evolution fluid inclusion Fuman oilfield Tarim Basin
下载PDF
Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field,Tarim Basin,NW China 被引量:2
4
作者 MA Yongsheng CAI Xunyu +4 位作者 YUN Lu LI Zongjie LI Huili DENG Shang ZHAO Peirong 《Petroleum Exploration and Development》 CSCD 2022年第1期1-20,共20页
In this review on the exploration and development process of the Shunbei ultra-deep carbonate oil and gas field in the Tarim Basin, the progress of exploration and development technologies during the National 13th Fiv... In this review on the exploration and development process of the Shunbei ultra-deep carbonate oil and gas field in the Tarim Basin, the progress of exploration and development technologies during the National 13th Five-Year Plan of China has been summarized systematically, giving important guidance for the exploration and development of ultra-deep marine carbonate reservoirs in China and abroad. Through analyzing the primary geological factors of “hydrocarbon generation-reservoir formation-hydrocarbon accumulation” of ancient and superposed basin comprehensively and dynamically, we point out that because the Lower Cambrian Yuertusi Formation high-quality source rocks have been located in a low-temperature environment for a long time, they were capable of generating hydrocarbon continuously in late stage, providing ideal geological conditions for massive liquid hydrocarbon accumulation in ultra-deep layers. In addition, strike-slip faults developed in tectonically stable areas have strong control on reservoir formation and hydrocarbon accumulation in this region. With these understandings, the exploration focus shifted from the two paleo-uplifts located in the north and the south to the Shuntuoguole lower uplift located in between and achieved major hydrocarbon discoveries. Through continuing improvement of seismic exploration technologies for ultra-deep carbonates in desert, integrated technologies including seismic acquisition in ultra-deep carbonates,seismic imaging of strike-slip faults and the associated cavity-fracture systems, detailed structural interpretation of strike-slip faults, characterization and quantitative description of fault-controlled cavities and fractures, description of fault-controlled traps and target optimization have been established. Geology-engineering integration including well trajectory optimization,high efficiency drilling, completion and reservoir reformation technologies has provided important support for exploration and development of the Shunbei oil and gas field. 展开更多
关键词 ultra-deep carbonates fault-controlled fracture-vug reservoir strike-slip fault Shunbei oil and gas field Ordovician Tarim Basin
下载PDF
Sinian hydrocarbon accumulation conditions and exploration potential at the northwest margin of the Yangtze region, China
5
作者 YANG Yu WANG Zecheng +3 位作者 WEN Long XIE Wuren FU Xiaodong LI Wenzheng 《Petroleum Exploration and Development》 CSCD 2022年第2期272-284,共13页
Based on outcrop, drilling, logging and seismic data, the reservoir forming conditions, reservoir forming model and exploration potential of the ultra-deep Sinian Dengying Formation at the northwest margin of Yangtze ... Based on outcrop, drilling, logging and seismic data, the reservoir forming conditions, reservoir forming model and exploration potential of the ultra-deep Sinian Dengying Formation at the northwest margin of Yangtze craton region were examined.(1) This area is in craton rifting stage from Sinian to Early Cambrian, characterized by syn-sedimentary faults and rapid subsidence, significant sedimentary differences, and development of Dengying Formation platform margins on both sides of the rift.(2) The Sinian–Cambrian in this area has two sets of high-quality source rocks, Doushantuo Formation and Maidiping-Qiongzhusi Formation;of which, the latter has a thickness of 150–600 m and hydrocarbon generation intensity of(100-200)×10;m;/km;.(3) The mounds and shoals in the platform margin of Sinian Dengying Formation controlled by faults are thick and distributed in rows and zones;they are reformed by contemporaneous–quasi-contemporaneous and supergene karstification jointly, forming pore-type reservoirs with a thickness of 200-400 m.(4) The two sets of source rocks enter oil generation windows from Permian to Early Triassic, and the oil migrates a short distance to the lithologic traps of mounds and shoals to form a huge scale paleo-oil reservoir group;from Late Triassic to Jurassic, the oil in the paleo-oil reservoirs is cracked into gas, laying the foundation of present natural gas reservoirs.(5) The mound-shoal body at the platform margin of Dengying Formation and the two sets of high-quality source rocks combine into several types of favorable source-reservoir combinations, which, with the advantage of near-source and high-efficiency reservoir formation, and can form large lithologic gas reservoirs. The Mianyang-Jiange area is a potential large gas field with trillion cubic meters of reserves. According to seismic prediction, the Laoguanmiao structure in this area has the Deng-2 Member mound-shoal reservoir of about 1300 km^(2), making it a ultra-deep target worthy of exploration in the near future. 展开更多
关键词 craton rift Dengying Formation source rock fault-controlled platform margin belt lithologic petroleum reservoir northwest margin of Yangtze craton region
下载PDF
Laboratory experiments of well testing for fracture-cave carbonate gas reservoirs 被引量:1
6
作者 Yu Xiong Wanli Xiong +2 位作者 Mingjin Cai Chengxi Hou Chong Wang 《Petroleum》 2017年第3期301-308,共8页
It is well known that the flowing of oil and gas in fracture and cave does not obey Darcy law,which makes it unable to interpret parameters correctly when doing well testing for those kinds of formation for having no ... It is well known that the flowing of oil and gas in fracture and cave does not obey Darcy law,which makes it unable to interpret parameters correctly when doing well testing for those kinds of formation for having no flowing test used to correct corresponding flowing equations.Based on similarity criterion,a physical experimental method for gas flowing from cave to wellbore through fracture has been built up.The characteristics of fluid flowing in fracture and cave can be seen clearly according to logelog curves with the measured data,which was obtained from the experimental model test and dealt with Savitzky-Golay filtering method.In addition,a new mathematical model reflecting those transient-flow behaviors as well as its solution has been presented in this paper.Logelog curves obtained from our new model could reflect the characteristics of flowing in fracture and cave.The results showed that test experiments can reflect the influence of large-scaled cave and fracture on the flowing characteristics and the new model can be applied to explain parameters of fracture and cave for similar cases. 展开更多
关键词 fractured-cave reservoir Well testing Mathematical model Similarity criterion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部