This paper proposes an adaptive method based on fuzzy logic that utilizes data from phasor measurement units(PMUs) to assess and classify generating-side voltage trajectories. The voltage variable and its associated d...This paper proposes an adaptive method based on fuzzy logic that utilizes data from phasor measurement units(PMUs) to assess and classify generating-side voltage trajectories. The voltage variable and its associated derivatives are used as the input variables of a fuzzy-logic block. In addition, the voltage trajectory is compared with the pre-selected pilot-bus voltage to make a reliable decision about the voltage operational state. Different types of short-term voltage dynamics are considered in the proposed method. The fuzzy membership functions are determined using a systematic method that considers the current situation of the voltage trajectory. Finally, the voltage status is categorized into four classes to determine appropriate remedial actions. The proposed method is validated on a IEEE 73-bus power system in a MATLAB environment.展开更多
In this paper, controller parameters of static var compensators(SVCs) at planned locations are optimized to mitigate fault-induced delayed voltage recovery issues and improve angular stability of a multi-machine power...In this paper, controller parameters of static var compensators(SVCs) at planned locations are optimized to mitigate fault-induced delayed voltage recovery issues and improve angular stability of a multi-machine power system. The problem is formulated as a nonlinear optimization problem involving constraints on post-fault trajectories of voltages and frequencies. This paper proposes a mesh adaptive direct search based algorithm interfaced with a power system simulator for the optimization of SVC controllerparameters. The proposed method is tested on an NPCC140-bus system to optimize controller parameters for three SVCs. Simulations on critical contingencies verify that post-fault transient voltages and generator speeds can both quickly recover and transient stability of the system is improved.展开更多
基金supported in part by Smart/Micro Grids Research Center (SMGRC),University of Kurdistan。
文摘This paper proposes an adaptive method based on fuzzy logic that utilizes data from phasor measurement units(PMUs) to assess and classify generating-side voltage trajectories. The voltage variable and its associated derivatives are used as the input variables of a fuzzy-logic block. In addition, the voltage trajectory is compared with the pre-selected pilot-bus voltage to make a reliable decision about the voltage operational state. Different types of short-term voltage dynamics are considered in the proposed method. The fuzzy membership functions are determined using a systematic method that considers the current situation of the voltage trajectory. Finally, the voltage status is categorized into four classes to determine appropriate remedial actions. The proposed method is validated on a IEEE 73-bus power system in a MATLAB environment.
基金supported in part by the ERC Program of the NSF and DOE under NSF (No. EEC-1041877)
文摘In this paper, controller parameters of static var compensators(SVCs) at planned locations are optimized to mitigate fault-induced delayed voltage recovery issues and improve angular stability of a multi-machine power system. The problem is formulated as a nonlinear optimization problem involving constraints on post-fault trajectories of voltages and frequencies. This paper proposes a mesh adaptive direct search based algorithm interfaced with a power system simulator for the optimization of SVC controllerparameters. The proposed method is tested on an NPCC140-bus system to optimize controller parameters for three SVCs. Simulations on critical contingencies verify that post-fault transient voltages and generator speeds can both quickly recover and transient stability of the system is improved.