This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem wit...This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.展开更多
This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed t...This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions.Then,the commonly used and powerful proportional-integral-derivative(PID)control concept is employed to filter the transformed error variables.To handle the fault-induced nonlinear terms,a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety.It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds.Experimental results are presented to verify the feasibility of the developed FTC scheme.展开更多
Support vector machines have met with significant success in the information retrieval field, especially in handling text classification tasks. Although various performance estimators for SVMs have been proposed, thes...Support vector machines have met with significant success in the information retrieval field, especially in handling text classification tasks. Although various performance estimators for SVMs have been proposed, these only focus on accuracy which is based on the leave-one-out cross validation procedure. Information-retrieval-related performance measures are always neglected in a kernel learning methodology. In this paper, we have proposed a set of information-retrieval-oriented performance estimators for SVMs, which are based on the span bound of the leave-one-out procedure. Experiments have proven that our proposed estimators are both effective and stable.展开更多
The main objective of this study is to develop the optimal semi-analytical modeling for the infiniteconductivity horizontal well performance under rectangular bounded reservoir based on a new instantaneous source func...The main objective of this study is to develop the optimal semi-analytical modeling for the infiniteconductivity horizontal well performance under rectangular bounded reservoir based on a new instantaneous source function.The available semi-analytical infinite-conductivity models(ICMs)for horizontal well under rectangular bounded reservoir in literature were developed by applying superposition of pressures in space(SPS).A new instantaneous source function(i.e.,instantaneous uniform-flux segmentary source function under bounded reservoir)is derived to be used instead of SPS to develop the optimal semi-analytical ICM.The new semi-analytical ICM is verified with ICM of Schlumberger[1]and with previous semi-analytical ICMs in terms of bottom hole pressure(BHP)profile and inflow rate distribution along the wellbore.The model is also validated with real horizontal wells in terms of inflow rate distribution along the wellbore.The results show that the developed model gives the optimal semi-analytical modeling for the infinite-conductivity horizontal well performance under rectangular bounded reservoir.Besides that,high computationalefficiency and high-resolution of wellbore discretization have been achieved(i.e.,wellbore segment number could be tens of hundreds depending on solution requirement).The results also show that at pseudosteady state(PSS)flow regime,inflow rate distribution along the wellbore by previous semi-analytical ICMs is stabilized U-shaped as performance of inflow rate distribution at late radial flow regime.Therefore,the previous semi-analytical ICMs are incorrectly modeling inflow rate distribution at PSS flow regime due to the negative influence of applying SPS.The optimal semi-analytical ICM is in a general form and real time domain,and can be applicable for 3D horizontal well and 2D vertical fracture well under infinite and rectangular bounded reservoirs,of uniform-flux and infinite-conductivity wellbore conditions at any time of well life.展开更多
In consideration of the constraints of actual working fluids on theoretical study of organic Rankine cycle(ORC), a trapezoidal cycle(TPC) with theoretical model to simulate ORC was proposed in previous works. In this ...In consideration of the constraints of actual working fluids on theoretical study of organic Rankine cycle(ORC), a trapezoidal cycle(TPC) with theoretical model to simulate ORC was proposed in previous works. In this study, mathematical models of working fluids including model of simulated saturation curve(MSSC) and model of linear saturation lines(MLSL) are proposed and built. Combining mathematical models of working fluids and TPC, the thermodynamic characteristics and principles of TPC(or ORC) can be studied or predicted theoretically. There exists a shift-curve of net power output with corresponding shifttemperature of heating fluid for working fluids, which indicates the shift of net power output from having optimum condition of maximum power to monotonic increase with evaporation temperature. This shift-characteristic is significant to working fluid selection and evaluation of cycle performance, for it indicates that cycle without optimum condition can yield higher net power output than the cycle with optimum condition. Equations to calculate the shift-temperature in ORC(or TPC) are derived; and equations to calculate the highest optimal evaporation temperature and highest maximum power as the highest optimum condition at this shift-temperature are obtained. Based on TPC and its theoretical model, the lower and upper bounds of thermal performance(maximum power and corresponding thermal efficiency) of TPC(or ORC) can be demonstrated and acquired. TPC can develop to Carnot cycle or trilateral cycle that it is significant to use TPC as a generalized cycle to study the general principles and characteristics of the cycles.展开更多
A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decou...A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.展开更多
The global stabilization problem of the multiple-integrator system by bounded controls is considered. A nonlinear feedback law consisting of nested saturation functions is proposed. This type of nonlinear feedback law...The global stabilization problem of the multiple-integrator system by bounded controls is considered. A nonlinear feedback law consisting of nested saturation functions is proposed. This type of nonlinear feedback law that is a modification and generalization of the result given in [1] needs only [(n + 1)/2] (n is the dimensions of the system) saturation elements, which is fewer than that which the other nonlinear laws need. Furthermore, the poles of the closedloop system can be placed on any location on the left real axis when none of the saturation elements in the control laws is saturated. This type of nonlinear control law exhibits a simpler structure and can significantly improve the transient performances of the closed-loop system, and is very superior to the other existing methods. Simulation on a fourth-order system is used to validate the proposed method.展开更多
This paper presents a linear matrix inequality (LMI) approach to solve the fault-tolerant control (FTC) problem of actuator faults. The range of actuator faults is considered as a parameter region and subdivided i...This paper presents a linear matrix inequality (LMI) approach to solve the fault-tolerant control (FTC) problem of actuator faults. The range of actuator faults is considered as a parameter region and subdivided into several subregions to achieve a certain desired performance specification. Based on the integral quadratic constraint (IQC) approach, a passive fault-tolerant controller for the whole fault region and multiple fault-tolerant controllers for each fault subregion are designed for guaranteeing stability and improving performance of the FTC system, respectively. According to the estimation of parameters by FDI process, the corresponding subregion controller is chosen for the stability and optimal performance of closed-loop systems when the fault occurs. The case of incorrect estimation is also considered by comparing the performance index between the switched controller and the passive fault-tolerant controller. The proposed design technique is finally evaluated in the light of a simulation example.展开更多
Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used....Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used. In this paper a set of approximation algorithms is presented for cases in which the ability to preview at most k(〉=2) arriving bins is given. With the essential assumption that all bin sizes are not less than the largest item size, analytical results show the asymptotic worst case ratios of all k-bounded space and offiine algorithms are 2. Based on experiments by applying algorithms to instances in which item sizes and bin sizes are drawn independently from the continuous uniform distribution respectively in the interval [0,u] and [u,l ], averagecase experimental results show that, with fixed k, algorithms with the Best Fit packing(closing) rule are statistically better than those with the First Fit packing(closing) rule.展开更多
During the last years the theory of compressive sensing has found significant utility in the digital holography realm. In this letter we summarize and extend our previous theoretical results which determine the relati...During the last years the theory of compressive sensing has found significant utility in the digital holography realm. In this letter we summarize and extend our previous theoretical results which determine the relation between the number of Fresnel samples required on the object illumination type, illumination wavelength, imaging geometry and sensor's size and resolution.展开更多
This paper investigates the performability of hierarchical Wireless Networked Control Systems (WNCS). The WNCS studied can operate in two modes: passive supervisor and active supervisor. It is first shown that the Mar...This paper investigates the performability of hierarchical Wireless Networked Control Systems (WNCS). The WNCS studied can operate in two modes: passive supervisor and active supervisor. It is first shown that the Markov models for both modes are identical. Performability models are then developed and a case study shows how to use these models to help make design decisions. More specifically, it is observed that the performability of a passive supervisor system increases in time while that of an active supervisor system decreases in time.展开更多
In this paper, a decentralized fault-tolerant cooperative control scheme is developed for multiple unmanned aerial vehicles(UAVs) in the presence of actuator faults and a directed communication network. To counteract ...In this paper, a decentralized fault-tolerant cooperative control scheme is developed for multiple unmanned aerial vehicles(UAVs) in the presence of actuator faults and a directed communication network. To counteract in-flight actuator faults and enhance formation flight safety, neural networks(NNs) are used to approximate unknown nonlinear terms due to the inherent nonlinearities in UAV models and the actuator loss of control effectiveness faults. To further compensate for NN approximation errors and actuator bias faults, the disturbance observer(DO) technique is incorporated into the control scheme to increase the composite approximation capability.Moreover, the prediction errors, which represent the approximation qualities of the states induced by NNs and DOs to the measured states, are integrated into the developed fault-tolerant cooperative control scheme. Furthermore,prescribed performance functions are imposed on the attitude synchronization tracking errors, to guarantee the prescribed synchronization tracking performance. One of the key features of the proposed strategy is that unknown terms due to the inherent nonlinearities in UAVs and actuator faults are compensated for by the composite approximators constructed by NNs, DOs, and prediction errors. Another key feature is that the attitude synchronization tracking errors are strictly constrained within the prescribed bounds. Finally, simulation results are provided and have demonstrated the effectiveness of the proposed control scheme.展开更多
基金supported by the National Natural Science Foundation of China(61873219)。
文摘This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.
基金This work was supported by the National Natural Science Foundation of China(62003162,61833013,62020106003)the Natural Science Foundation of Jiangsu Province of China(BK20200416)+3 种基金the China Postdoctoral Science Foundation(2020TQ0151,2020M681590)the State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University(2019-KF-23-05)the 111 Project(B20007)the Natural Sciences and Engineering Research Council of Canada.
文摘This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions.Then,the commonly used and powerful proportional-integral-derivative(PID)control concept is employed to filter the transformed error variables.To handle the fault-induced nonlinear terms,a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety.It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds.Experimental results are presented to verify the feasibility of the developed FTC scheme.
文摘Support vector machines have met with significant success in the information retrieval field, especially in handling text classification tasks. Although various performance estimators for SVMs have been proposed, these only focus on accuracy which is based on the leave-one-out cross validation procedure. Information-retrieval-related performance measures are always neglected in a kernel learning methodology. In this paper, we have proposed a set of information-retrieval-oriented performance estimators for SVMs, which are based on the span bound of the leave-one-out procedure. Experiments have proven that our proposed estimators are both effective and stable.
文摘The main objective of this study is to develop the optimal semi-analytical modeling for the infiniteconductivity horizontal well performance under rectangular bounded reservoir based on a new instantaneous source function.The available semi-analytical infinite-conductivity models(ICMs)for horizontal well under rectangular bounded reservoir in literature were developed by applying superposition of pressures in space(SPS).A new instantaneous source function(i.e.,instantaneous uniform-flux segmentary source function under bounded reservoir)is derived to be used instead of SPS to develop the optimal semi-analytical ICM.The new semi-analytical ICM is verified with ICM of Schlumberger[1]and with previous semi-analytical ICMs in terms of bottom hole pressure(BHP)profile and inflow rate distribution along the wellbore.The model is also validated with real horizontal wells in terms of inflow rate distribution along the wellbore.The results show that the developed model gives the optimal semi-analytical modeling for the infinite-conductivity horizontal well performance under rectangular bounded reservoir.Besides that,high computationalefficiency and high-resolution of wellbore discretization have been achieved(i.e.,wellbore segment number could be tens of hundreds depending on solution requirement).The results also show that at pseudosteady state(PSS)flow regime,inflow rate distribution along the wellbore by previous semi-analytical ICMs is stabilized U-shaped as performance of inflow rate distribution at late radial flow regime.Therefore,the previous semi-analytical ICMs are incorrectly modeling inflow rate distribution at PSS flow regime due to the negative influence of applying SPS.The optimal semi-analytical ICM is in a general form and real time domain,and can be applicable for 3D horizontal well and 2D vertical fracture well under infinite and rectangular bounded reservoirs,of uniform-flux and infinite-conductivity wellbore conditions at any time of well life.
基金supported by the National Natural Science Foundation of China(Grant No.51276122)
文摘In consideration of the constraints of actual working fluids on theoretical study of organic Rankine cycle(ORC), a trapezoidal cycle(TPC) with theoretical model to simulate ORC was proposed in previous works. In this study, mathematical models of working fluids including model of simulated saturation curve(MSSC) and model of linear saturation lines(MLSL) are proposed and built. Combining mathematical models of working fluids and TPC, the thermodynamic characteristics and principles of TPC(or ORC) can be studied or predicted theoretically. There exists a shift-curve of net power output with corresponding shifttemperature of heating fluid for working fluids, which indicates the shift of net power output from having optimum condition of maximum power to monotonic increase with evaporation temperature. This shift-characteristic is significant to working fluid selection and evaluation of cycle performance, for it indicates that cycle without optimum condition can yield higher net power output than the cycle with optimum condition. Equations to calculate the shift-temperature in ORC(or TPC) are derived; and equations to calculate the highest optimal evaporation temperature and highest maximum power as the highest optimum condition at this shift-temperature are obtained. Based on TPC and its theoretical model, the lower and upper bounds of thermal performance(maximum power and corresponding thermal efficiency) of TPC(or ORC) can be demonstrated and acquired. TPC can develop to Carnot cycle or trilateral cycle that it is significant to use TPC as a generalized cycle to study the general principles and characteristics of the cycles.
基金Foundation item: Project(2012M521538) supported by China Postdoctoral Science Foundation Project suppolted by Postdoctoral Science Foundation of Central South University
文摘A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.
基金the Major Program of National Natural Science Foundation of China (No.60710002)Program for Changjiang Scholars and Innovative Research Team in university.
文摘The global stabilization problem of the multiple-integrator system by bounded controls is considered. A nonlinear feedback law consisting of nested saturation functions is proposed. This type of nonlinear feedback law that is a modification and generalization of the result given in [1] needs only [(n + 1)/2] (n is the dimensions of the system) saturation elements, which is fewer than that which the other nonlinear laws need. Furthermore, the poles of the closedloop system can be placed on any location on the left real axis when none of the saturation elements in the control laws is saturated. This type of nonlinear control law exhibits a simpler structure and can significantly improve the transient performances of the closed-loop system, and is very superior to the other existing methods. Simulation on a fourth-order system is used to validate the proposed method.
基金partly supported by the Program for New Century Excellent Talents in University (No.NCET-04-0283)the Funds for Creative Research Groups of China (No.60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421)the State Key Program of National Natural Science of China (No.60534010)the Funds of National Science of China (No.60674021)the Funds of PhD program of MOE,China (No.20060145019)the 111 Project (No.B08015)
文摘This paper presents a linear matrix inequality (LMI) approach to solve the fault-tolerant control (FTC) problem of actuator faults. The range of actuator faults is considered as a parameter region and subdivided into several subregions to achieve a certain desired performance specification. Based on the integral quadratic constraint (IQC) approach, a passive fault-tolerant controller for the whole fault region and multiple fault-tolerant controllers for each fault subregion are designed for guaranteeing stability and improving performance of the FTC system, respectively. According to the estimation of parameters by FDI process, the corresponding subregion controller is chosen for the stability and optimal performance of closed-loop systems when the fault occurs. The case of incorrect estimation is also considered by comparing the performance index between the switched controller and the passive fault-tolerant controller. The proposed design technique is finally evaluated in the light of a simulation example.
文摘Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used. In this paper a set of approximation algorithms is presented for cases in which the ability to preview at most k(〉=2) arriving bins is given. With the essential assumption that all bin sizes are not less than the largest item size, analytical results show the asymptotic worst case ratios of all k-bounded space and offiine algorithms are 2. Based on experiments by applying algorithms to instances in which item sizes and bin sizes are drawn independently from the continuous uniform distribution respectively in the interval [0,u] and [u,l ], averagecase experimental results show that, with fixed k, algorithms with the Best Fit packing(closing) rule are statistically better than those with the First Fit packing(closing) rule.
文摘During the last years the theory of compressive sensing has found significant utility in the digital holography realm. In this letter we summarize and extend our previous theoretical results which determine the relation between the number of Fresnel samples required on the object illumination type, illumination wavelength, imaging geometry and sensor's size and resolution.
文摘This paper investigates the performability of hierarchical Wireless Networked Control Systems (WNCS). The WNCS studied can operate in two modes: passive supervisor and active supervisor. It is first shown that the Markov models for both modes are identical. Performability models are then developed and a case study shows how to use these models to help make design decisions. More specifically, it is observed that the performability of a passive supervisor system increases in time while that of an active supervisor system decreases in time.
基金the National Natural Science Foundation of China (Nos. 61833013, 61573282, and 61473229)the Natural Science Foundation of Shaanxi Province, China (No. 2015JZ020)the Natural Sciences and Engineering Research Council of Canada.
文摘In this paper, a decentralized fault-tolerant cooperative control scheme is developed for multiple unmanned aerial vehicles(UAVs) in the presence of actuator faults and a directed communication network. To counteract in-flight actuator faults and enhance formation flight safety, neural networks(NNs) are used to approximate unknown nonlinear terms due to the inherent nonlinearities in UAV models and the actuator loss of control effectiveness faults. To further compensate for NN approximation errors and actuator bias faults, the disturbance observer(DO) technique is incorporated into the control scheme to increase the composite approximation capability.Moreover, the prediction errors, which represent the approximation qualities of the states induced by NNs and DOs to the measured states, are integrated into the developed fault-tolerant cooperative control scheme. Furthermore,prescribed performance functions are imposed on the attitude synchronization tracking errors, to guarantee the prescribed synchronization tracking performance. One of the key features of the proposed strategy is that unknown terms due to the inherent nonlinearities in UAVs and actuator faults are compensated for by the composite approximators constructed by NNs, DOs, and prediction errors. Another key feature is that the attitude synchronization tracking errors are strictly constrained within the prescribed bounds. Finally, simulation results are provided and have demonstrated the effectiveness of the proposed control scheme.