Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants t...Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants to maintain the storage state consistently.However,with the improvement of network environment complexity and system scale,blockchain development is limited by the performance,security,and scalability of the consensus protocol.To address this problem,this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance(PBFT)and proposes a Byzantine fault-tolerant(BFT)consensus protocol based on collaborative filtering recommendation(CRBFT).Specifically,an improved collaborative filtering recommendation method is designed to use the similarity between a node’s recommendation opinions and those of the recommender as a basis for determining whether to adopt the recommendation opinions.This can amplify the recommendation voice of good nodes,weaken the impact of cunningmalicious nodes on the trust value calculation,andmake the calculated resultsmore accurate.In addition,the nodes are given voting power according to their trust value,and a weight randomelection algorithm is designed and implemented to reduce the risk of attack.The experimental results show that CRBFT can effectively eliminate various malicious nodes and improve the performance of blockchain systems in complex network environments,and the feasibility of CRBFT is also proven by theoretical analysis.展开更多
In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,whe...In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,where high performance,efficiency,and reliability are crucial.The ability of the drive system to maintain long-term fault-tolerant control(FTC)operation after a failure is essential.The likelihood of inverter failures surpasses that of other components in the drive system,highlighting its critical importance.Long-term FTC operation ensures the system retains its fundamental functions until safe repairs or replacements can be made.The focus of developing a FTC strategy has shifted from basic FTC operations to enhancing the post-fault quality to accommodate the realities of prolonged operation post-failure.This paper primarily investigates FTC strategies for inverter failures in various motor drive systems over the past decade.These strategies are categorized into three types based on post-fault operational quality:rescue,remedy,and reestablishment.The paper discusses each typical control strategy and its research focus,the strengths and weaknesses of various algorithms,and recent advancements in FTC.Finally,this review summarizes effective FTC techniques for inverter failures in motor drive systems and suggests directions for future research.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator fault...This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator faults.Based on the fractional Lyapunov stability theory and the finite-time stability theory,a fractional-order nonsingular fast terminal sliding mode(FONFTSM)control law is proposed to promote the tracking and fault tolerance performance of the considered system.Meanwhile,the adaptive fractional-order update laws are designed to cope with the unknown upper bounds of the unknown actuator faults and external disturbances.Furthermore,the finite-time stability of the closed-loop system is proved.Finally,comparison simulation results are also provided to show the validity and the advantages of the proposed techniques.展开更多
The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fau...The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.展开更多
The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the ...The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.展开更多
Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3...Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3DGait)represented by a set of interpretable 3DGait descriptors based on a 3D parametric body model.The 3DGait descriptors are utilised as invariant gait features in the 3DGait recognition method to address object carrying and dressing.The 3DGait recognitionmethod involves 2-dimensional(2D)to 3DGaitdata learningbasedon3Dvirtual samples,a semantic gait parameter estimation Long Short Time Memory(LSTM)network(3D-SGPE-LSTM),a feature fusion deep model based on a multi-set canonical correlation analysis,and SoftMax recognition network.First,a sensory experiment based on 3D body shape and pose deformation with 3D virtual dressing is used to fit 3DGait onto the given 2D gait images.3Dinterpretable semantic parameters control the 3D morphing and dressing involved.Similarity degree measurement determines the semantic descriptors of 2D gait images of subjects with various shapes,poses and styles.Second,using the 2D gait images as input and the subjects’corresponding 3D semantic descriptors as output,an end-to-end 3D-SGPE-LSTM is constructed and trained.Third,body shape,pose and external gait factors(3D-eFactors)are estimated using the 3D-SGPE-LSTM model to create a set of interpretable gait descriptors to represent the 3DGait Model,i.e.,3D intrinsic semantic shape descriptor(3DShape);3D skeleton-based gait pose descriptor(3D-Pose)and 3D dressing with other 3D-eFators.Finally,the 3D-Shape and 3D-Pose descriptors are coupled to a unified pattern space by learning prior knowledge from the 3D-eFators.Practical research on CASIA B,CMU MoBo,TUM GAID and GPJATK databases shows that 3DGait is robust against object carrying and dressing variations,especially under multi-cross variations.展开更多
To address the problem of frequent battery replacement for wearable sensors applied to fall detection among the elderly,a portable and lowcost triboelectric nanogenerator(TENG)-based self-powered sensor for human gait...To address the problem of frequent battery replacement for wearable sensors applied to fall detection among the elderly,a portable and lowcost triboelectric nanogenerator(TENG)-based self-powered sensor for human gait monitoring is proposed.The main fabrication materials of the TENG are polytetrafluoroethylene(PTFE)film,aluminum(Al)foil,and polyimide(PI)film,where PTFE and Al are the friction layer materials and the PI film is used to improve the output performance.Exploiting the ability of TENGs to monitor changes in environmental conditions,a self-powered sensor based on the TENG is placed in an insole to collect gait information.Since a TENG does not require a power source to convert physical and mechanical signals into electrical signals,the electrical signals can be used as sensing signals to be analyzed by a computer to recognize daily human activities and fall status.Experimental results show that the accuracy of the TENG-based sensor for recognizing human gait is 97.2%,demonstrating superior sensing performance and providing valuable insights for future monitoring of fall events in the elderly population.展开更多
The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots call...The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences.展开更多
The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in c...The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work.展开更多
Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients.The article utilizes the random forest...Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients.The article utilizes the random forest algorithm to construct a gait parameter model,which maps the relationship between parameters such as height,weight,age,gender,and gait speed,achieving prediction of key points on the gait curve.To enhance prediction accuracy,an attention mechanism is introduced into the algorithm to focus more on the main features.Meanwhile,to ensure high similarity between the reconstructed gait curve and the normal one,probabilistic motion primitives(ProMP)are used to learn the probability distribution of normal gait data and construct a gait trajectorymodel.Finally,using the specified step speed as input,select a reference gait trajectory from the learned trajectory,and reconstruct the curve of the reference trajectoryusing the gait keypoints predictedby the parametermodel toobtain the final curve.Simulation results demonstrate that the method proposed in this paper achieves 98%and 96%curve correlations when generating personalized lower limb gait curves for different patients,respectively,indicating its suitability for such tasks.展开更多
Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized fo...Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized for preventive care over 5 years, using detailed gait function measurements with an accelerometer-based system. Methods: Seventy individuals (17 male and 53 female) of a daycare service in Tokyo participated in a weekly exercise program, meeting 1 - 2 times. The average age of the participants at the start of the program was 81.4 years. Gait function, including gait speed, stride length, root mean square (RMS) of acceleration, gait cycle time and its standard deviation, and left-right difference in stance time, was evaluated every 6 months. Results: Gait speed and stride length improved considerably within six months of starting the exercise program, confirming an initial improvement in gait function. This suggests that regular exercise programs can maintain or improve gait function even age groups that predictably have a gradual decline in gait ability due to enhanced age. In the long term, many indicators tended to approach baseline values. However, the exercise program seemingly counteracts age-related changes in gait function and maintains a certain level of function. Conclusions: While a decline in gait ability with aging is inevitable, establishing appropriate exercise habits in late-stage older individuals may contribute to long-term maintenance of gait function.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
Individuals with NGLY1 Deficiency, an inherited autosomal recessive disorder, exhibit hyperkinetic movements including athetoid, myoclonic, dysmetric, and dystonic movements impacting both upper and lower limb motion....Individuals with NGLY1 Deficiency, an inherited autosomal recessive disorder, exhibit hyperkinetic movements including athetoid, myoclonic, dysmetric, and dystonic movements impacting both upper and lower limb motion. This report provides the first set of laboratory-based measures characterizing the gait patterns of two individuals with NGLY1 Deficiency, using both linear and non-linear measures, during treadmill walking, and compares them to neurotypical controls. Lower limb kinematics were obtained with a camera-based motion analysis system and bilateral time normalized lower limb joint time series waveforms were developed. Linear measures of joint range of motion, stride times and peak angular velocity were obtained, and confidence intervals were used to determine if there were differences between the patients and control. Correlations between participant and control mean joint waveforms were calculated and used to evaluate the similarities between patients and controls. Non-linear measures included: joint angle-angle diagrams, phase-portrait areas, and continuous relative phase (CRP) measures. These measures were used to assess joint coordination and control features of the lower limb motion. Participants displayed high correlations with their control counterparts for the hip and knee joint waveforms, but joint motion was restricted. Peak angular velocities were also significantly less than those of the controls. Both angle-angle and phase-portrait areas were less than the controls although the general shapes of those diagrams were similar to those of the controls. The NGLY1 Deficient participants’ CRP measures displayed disrupted coordination patterns with the knee-ankle patterns displaying more disruption than the hip-knee measures. Overall, the participants displayed a functional walking pattern that differed in many quantitative ways from those of the neurotypical controls. Using both linear and non-linear measures to characterize gait provides a more comprehensive and nuanced characterization of NGLY1 gait and can be used to develop interventions targeted toward specific aspects of disordered gait.展开更多
Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. M...Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. Methods: Thirty-two late-stage elderly individuals were evaluated for knee pain during rest, walking, and program exercises, with and without TENS. Gait analysis was performed using an IoT-based gait analysis device to examine the effects of TENS-induced analgesia on gait. Results: TENS significantly reduced knee pain during rest, walking, and programmed exercises, with the greatest analgesic effect observed during walking. The greater the knee pain without TENS, the more significant the analgesic effect of TENS. A comparison of gait parameters revealed a significant difference only in the gait cycle time, with a trend towards faster walking with TENS;however, the effect was limited. Conclusion: TENS effectively relieves knee pain in late-stage elderly individuals and can be safely applied during exercise. Pain management using TENS provides important insights into the implementation of exercise therapy in this age group.展开更多
Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’bala...Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation.展开更多
In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault toleran...In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault.展开更多
An adaptive robust approach for actuator fault-tolerant control of a class of uncertain nonlinear systems is proposed.The two chief ways in which the system performance can degrade following an actuator-fault are unde...An adaptive robust approach for actuator fault-tolerant control of a class of uncertain nonlinear systems is proposed.The two chief ways in which the system performance can degrade following an actuator-fault are undesirable transients and unacceptably large steady-state tracking errors.Adaptive control based schemes can achieve good final tracking accuracy in spite of change in system parameters following an actuator fault,and robust control based designs can achieve guaranteed transient response.However,neither adaptive control nor robust control based fault-tolerant designs can address both the issues associated with actuator faults.In the present work,an adaptive robust fault-tolerant control scheme is claimed to solve both the problems,as it seamlessly integrates adaptive and robust control design techniques.Comparative simulation studies are performed using a nonlinear hypersonic aircraft model to show the effectiveness of the proposed scheme over a robust adaptive control based faulttolerant scheme.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62102449)awarded to W.J.Wang.
文摘Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants to maintain the storage state consistently.However,with the improvement of network environment complexity and system scale,blockchain development is limited by the performance,security,and scalability of the consensus protocol.To address this problem,this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance(PBFT)and proposes a Byzantine fault-tolerant(BFT)consensus protocol based on collaborative filtering recommendation(CRBFT).Specifically,an improved collaborative filtering recommendation method is designed to use the similarity between a node’s recommendation opinions and those of the recommender as a basis for determining whether to adopt the recommendation opinions.This can amplify the recommendation voice of good nodes,weaken the impact of cunningmalicious nodes on the trust value calculation,andmake the calculated resultsmore accurate.In addition,the nodes are given voting power according to their trust value,and a weight randomelection algorithm is designed and implemented to reduce the risk of attack.The experimental results show that CRBFT can effectively eliminate various malicious nodes and improve the performance of blockchain systems in complex network environments,and the feasibility of CRBFT is also proven by theoretical analysis.
基金supported in part by the National Natural Science Foundation of China under Grants 52025073 and 52107047in part by China Scholarship Council。
文摘In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,where high performance,efficiency,and reliability are crucial.The ability of the drive system to maintain long-term fault-tolerant control(FTC)operation after a failure is essential.The likelihood of inverter failures surpasses that of other components in the drive system,highlighting its critical importance.Long-term FTC operation ensures the system retains its fundamental functions until safe repairs or replacements can be made.The focus of developing a FTC strategy has shifted from basic FTC operations to enhancing the post-fault quality to accommodate the realities of prolonged operation post-failure.This paper primarily investigates FTC strategies for inverter failures in various motor drive systems over the past decade.These strategies are categorized into three types based on post-fault operational quality:rescue,remedy,and reestablishment.The paper discusses each typical control strategy and its research focus,the strengths and weaknesses of various algorithms,and recent advancements in FTC.Finally,this review summarizes effective FTC techniques for inverter failures in motor drive systems and suggests directions for future research.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金supported by the National Natural Science Foundation of China(61973331,61973257)the National Key Research and Development Plan Programs of China(2018YFB0106101).
文摘This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator faults.Based on the fractional Lyapunov stability theory and the finite-time stability theory,a fractional-order nonsingular fast terminal sliding mode(FONFTSM)control law is proposed to promote the tracking and fault tolerance performance of the considered system.Meanwhile,the adaptive fractional-order update laws are designed to cope with the unknown upper bounds of the unknown actuator faults and external disturbances.Furthermore,the finite-time stability of the closed-loop system is proved.Finally,comparison simulation results are also provided to show the validity and the advantages of the proposed techniques.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62203246, 62003127, and 62003183)。
文摘The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.
基金supported in part by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province under Grant SKLACSS-202102in part by the Intelligent Terminal Key Laboratory of Sichuan Province under Grant SCITLAB-1019.
文摘The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.
基金funded by the Research Foundation of Education Bureau of Hunan Province,China,under Grant Number 21B0060the National Natural Science Foundation of China,under Grant Number 61701179.
文摘Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3DGait)represented by a set of interpretable 3DGait descriptors based on a 3D parametric body model.The 3DGait descriptors are utilised as invariant gait features in the 3DGait recognition method to address object carrying and dressing.The 3DGait recognitionmethod involves 2-dimensional(2D)to 3DGaitdata learningbasedon3Dvirtual samples,a semantic gait parameter estimation Long Short Time Memory(LSTM)network(3D-SGPE-LSTM),a feature fusion deep model based on a multi-set canonical correlation analysis,and SoftMax recognition network.First,a sensory experiment based on 3D body shape and pose deformation with 3D virtual dressing is used to fit 3DGait onto the given 2D gait images.3Dinterpretable semantic parameters control the 3D morphing and dressing involved.Similarity degree measurement determines the semantic descriptors of 2D gait images of subjects with various shapes,poses and styles.Second,using the 2D gait images as input and the subjects’corresponding 3D semantic descriptors as output,an end-to-end 3D-SGPE-LSTM is constructed and trained.Third,body shape,pose and external gait factors(3D-eFactors)are estimated using the 3D-SGPE-LSTM model to create a set of interpretable gait descriptors to represent the 3DGait Model,i.e.,3D intrinsic semantic shape descriptor(3DShape);3D skeleton-based gait pose descriptor(3D-Pose)and 3D dressing with other 3D-eFators.Finally,the 3D-Shape and 3D-Pose descriptors are coupled to a unified pattern space by learning prior knowledge from the 3D-eFators.Practical research on CASIA B,CMU MoBo,TUM GAID and GPJATK databases shows that 3DGait is robust against object carrying and dressing variations,especially under multi-cross variations.
基金supported by the Xi’an Science and Technology Plan Project (No.2020KJRC0108).
文摘To address the problem of frequent battery replacement for wearable sensors applied to fall detection among the elderly,a portable and lowcost triboelectric nanogenerator(TENG)-based self-powered sensor for human gait monitoring is proposed.The main fabrication materials of the TENG are polytetrafluoroethylene(PTFE)film,aluminum(Al)foil,and polyimide(PI)film,where PTFE and Al are the friction layer materials and the PI film is used to improve the output performance.Exploiting the ability of TENGs to monitor changes in environmental conditions,a self-powered sensor based on the TENG is placed in an insole to collect gait information.Since a TENG does not require a power source to convert physical and mechanical signals into electrical signals,the electrical signals can be used as sensing signals to be analyzed by a computer to recognize daily human activities and fall status.Experimental results show that the accuracy of the TENG-based sensor for recognizing human gait is 97.2%,demonstrating superior sensing performance and providing valuable insights for future monitoring of fall events in the elderly population.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFF0306202).
文摘The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences.
基金supported by the“Human Resources Program in Energy Technol-ogy”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and Granted Financial Resources from the Ministry of Trade,Industry,and Energy,Republic of Korea(No.20204010600090)The funding of this work was provided by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work.
基金supported by Guizhou Provincial Department of Science and Technology(Guizhou Science and Technology Cooperation Support[2021]General 442)Guizhou Provincial Department of Science and Technology(Guizhou Science and Technology Cooperation Support[2023]General 179)Guizhou Provincial Department of Science and Technology(Guizhou Science and Technology Cooperation Support[2023]General 096).
文摘Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients.The article utilizes the random forest algorithm to construct a gait parameter model,which maps the relationship between parameters such as height,weight,age,gender,and gait speed,achieving prediction of key points on the gait curve.To enhance prediction accuracy,an attention mechanism is introduced into the algorithm to focus more on the main features.Meanwhile,to ensure high similarity between the reconstructed gait curve and the normal one,probabilistic motion primitives(ProMP)are used to learn the probability distribution of normal gait data and construct a gait trajectorymodel.Finally,using the specified step speed as input,select a reference gait trajectory from the learned trajectory,and reconstruct the curve of the reference trajectoryusing the gait keypoints predictedby the parametermodel toobtain the final curve.Simulation results demonstrate that the method proposed in this paper achieves 98%and 96%curve correlations when generating personalized lower limb gait curves for different patients,respectively,indicating its suitability for such tasks.
文摘Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized for preventive care over 5 years, using detailed gait function measurements with an accelerometer-based system. Methods: Seventy individuals (17 male and 53 female) of a daycare service in Tokyo participated in a weekly exercise program, meeting 1 - 2 times. The average age of the participants at the start of the program was 81.4 years. Gait function, including gait speed, stride length, root mean square (RMS) of acceleration, gait cycle time and its standard deviation, and left-right difference in stance time, was evaluated every 6 months. Results: Gait speed and stride length improved considerably within six months of starting the exercise program, confirming an initial improvement in gait function. This suggests that regular exercise programs can maintain or improve gait function even age groups that predictably have a gradual decline in gait ability due to enhanced age. In the long term, many indicators tended to approach baseline values. However, the exercise program seemingly counteracts age-related changes in gait function and maintains a certain level of function. Conclusions: While a decline in gait ability with aging is inevitable, establishing appropriate exercise habits in late-stage older individuals may contribute to long-term maintenance of gait function.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
文摘Individuals with NGLY1 Deficiency, an inherited autosomal recessive disorder, exhibit hyperkinetic movements including athetoid, myoclonic, dysmetric, and dystonic movements impacting both upper and lower limb motion. This report provides the first set of laboratory-based measures characterizing the gait patterns of two individuals with NGLY1 Deficiency, using both linear and non-linear measures, during treadmill walking, and compares them to neurotypical controls. Lower limb kinematics were obtained with a camera-based motion analysis system and bilateral time normalized lower limb joint time series waveforms were developed. Linear measures of joint range of motion, stride times and peak angular velocity were obtained, and confidence intervals were used to determine if there were differences between the patients and control. Correlations between participant and control mean joint waveforms were calculated and used to evaluate the similarities between patients and controls. Non-linear measures included: joint angle-angle diagrams, phase-portrait areas, and continuous relative phase (CRP) measures. These measures were used to assess joint coordination and control features of the lower limb motion. Participants displayed high correlations with their control counterparts for the hip and knee joint waveforms, but joint motion was restricted. Peak angular velocities were also significantly less than those of the controls. Both angle-angle and phase-portrait areas were less than the controls although the general shapes of those diagrams were similar to those of the controls. The NGLY1 Deficient participants’ CRP measures displayed disrupted coordination patterns with the knee-ankle patterns displaying more disruption than the hip-knee measures. Overall, the participants displayed a functional walking pattern that differed in many quantitative ways from those of the neurotypical controls. Using both linear and non-linear measures to characterize gait provides a more comprehensive and nuanced characterization of NGLY1 gait and can be used to develop interventions targeted toward specific aspects of disordered gait.
文摘Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. Methods: Thirty-two late-stage elderly individuals were evaluated for knee pain during rest, walking, and program exercises, with and without TENS. Gait analysis was performed using an IoT-based gait analysis device to examine the effects of TENS-induced analgesia on gait. Results: TENS significantly reduced knee pain during rest, walking, and programmed exercises, with the greatest analgesic effect observed during walking. The greater the knee pain without TENS, the more significant the analgesic effect of TENS. A comparison of gait parameters revealed a significant difference only in the gait cycle time, with a trend towards faster walking with TENS;however, the effect was limited. Conclusion: TENS effectively relieves knee pain in late-stage elderly individuals and can be safely applied during exercise. Pain management using TENS provides important insights into the implementation of exercise therapy in this age group.
文摘Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation.
基金supported by the National Natural Science Foundationof China (60902055)
文摘In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault.
基金supported by the US National Science Foundation (CMMI-1052872)the Ministry of Education of China
文摘An adaptive robust approach for actuator fault-tolerant control of a class of uncertain nonlinear systems is proposed.The two chief ways in which the system performance can degrade following an actuator-fault are undesirable transients and unacceptably large steady-state tracking errors.Adaptive control based schemes can achieve good final tracking accuracy in spite of change in system parameters following an actuator fault,and robust control based designs can achieve guaranteed transient response.However,neither adaptive control nor robust control based fault-tolerant designs can address both the issues associated with actuator faults.In the present work,an adaptive robust fault-tolerant control scheme is claimed to solve both the problems,as it seamlessly integrates adaptive and robust control design techniques.Comparative simulation studies are performed using a nonlinear hypersonic aircraft model to show the effectiveness of the proposed scheme over a robust adaptive control based faulttolerant scheme.