期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
1
作者 Xiu-Bo Chen Li-Yun Zhao +4 位作者 Gang Xu Xing-Bo Pan Si-Yi Chen Zhen-Wen Cheng Yi-Xian Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期143-150,共8页
Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correcti... Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correction ability and low overhead remains a significant challenge.In this paper,a low-overhead fault-tolerant error correction scheme is proposed for quantum communication systems.Firstly,syndrome ancillas are prepared into Bell states to detect errors caused by channel noise.We propose a detection approach that reduces the propagation path of quantum gate fault and reduces the circuit depth by splitting the stabilizer generator into X-type and Z-type.Additionally,a syndrome extraction circuit is equipped with two flag qubits to detect quantum gate faults,which may also introduce errors into the code block during the error detection process.Finally,analytical results are provided to demonstrate the fault-tolerant performance of the proposed FTEC scheme with the lower overhead of the ancillary qubits and circuit depth. 展开更多
关键词 fault-tolerant error correction quantum stabilizer code gate fault quantum circuit
下载PDF
Approximate error correction scheme for three-dimensional surface codes based reinforcement learning
2
作者 曲英杰 陈钊 +1 位作者 王伟杰 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期229-240,共12页
Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximat... Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximate error correction scheme that performs dimension mapping operations on surface codes.This error correction scheme utilizes the topological properties of error correction codes to map the surface code dimension to three dimensions.Compared to previous error correction schemes,the present three-dimensional surface code exhibits good scalability due to its higher redundancy and more efficient error correction capabilities.By reducing the number of ancilla qubits required for error correction,this approach achieves savings in measurement space and reduces resource consumption costs.In order to improve the decoding efficiency and solve the problem of the correlation between the surface code stabilizer and the 3D space after dimension mapping,we employ a reinforcement learning(RL)decoder based on deep Q-learning,which enables faster identification of the optimal syndrome and achieves better thresholds through conditional optimization.Compared to the minimum weight perfect matching decoding,the threshold of the RL trained model reaches 0.78%,which is 56%higher and enables large-scale fault-tolerant quantum computation. 展开更多
关键词 fault-tolerant quantum computing surface code approximate error correction reinforcement learning
下载PDF
A Fault-tolerance Estimating Method for Ionosphere Corrections in Satellite Navigation System 被引量:2
3
作者 GAO Shuliang LI Rui HUANG Zhigang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第6期749-755,共7页
Aiming to the reliable estimates of the ionosphere differential corrections for the satellite navigation system in the presence of the ionosphere anomaly, a fault-tolerance estimating method, which is based on the dis... Aiming to the reliable estimates of the ionosphere differential corrections for the satellite navigation system in the presence of the ionosphere anomaly, a fault-tolerance estimating method, which is based on the distributed Kalman filtering, is proposed. The method utilizes the parallel sub-filters for estimating the ionosphere differential corrections. Meanwhile, an infinite norm (IN) method is proposed for the detection of the ionosphere irregularity in the filter processing. Once the anomaly is detected, the sub-filter contaminated by the anomaly measurements will be excluded to ensure the reliability of the estimates. The simulation is conducted to validate the method and the results indicate that the anomaly can be found timely due to the novel fault detection method based on the infinite norm. Because of the parallel sub-filter architecture, the measurements are classified by the spatial distribution so that the ionosphere anomaly can be positioned and excluded more easily. Thus, the method can provide the robust and accurate ionosphere differential corrections. 展开更多
关键词 differential corrections ionosphere anomaly Kalman filter fault-tolerance fault detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部