1 Introduction The Dongshengmiao deposit is a super-large Zn-Pb polymetallic sulfide deposit which occurring in the Langshan-Zhaertaaishan metallogenic belt,and located in the western margin of the North China Platfor...1 Introduction The Dongshengmiao deposit is a super-large Zn-Pb polymetallic sulfide deposit which occurring in the Langshan-Zhaertaaishan metallogenic belt,and located in the western margin of the North China Platform.The ore-bodies of Dongshengmiao deposits are mainly hosted in the second Formation of Langshan Group.There are some studies on the geological characteristics(Peng et al.,2004),geological and展开更多
Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the constructi...Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the construction and operation of HWACT to analyze its fault features and corresponding protection technology. In this paper, the steady-state voltage and current characteristics of the bus bar and fault point and the steady-state overvoltage distribution along the line will be analyzed when a three-phase symmetrical short-circuit fault occurs on an HWACT line. On this basis, the threephase fault characteristics for longer transmission lines are also studied.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
Deformation characteristics of the Sichuan-Yunnan region during the two periods 1999--2007 and 2007--2009 are analyzed with a block deformation model and GPS velocity profiles. The results show that the direction of t...Deformation characteristics of the Sichuan-Yunnan region during the two periods 1999--2007 and 2007--2009 are analyzed with a block deformation model and GPS velocity profiles. The results show that the direction of the principal compressive strain rate of the Northwest-Sichuan block - the Mid-Yunnan block - the Southwest-Yunnan block was characterized by a clockwise rotation from north to south. The Anninghe and the Zemuhe faults had some shear-strain accumulation. The southern segment of the Xiaojiang fault had mainly strike-slip movement, while the northern segment was mainly accumulating strain. The 2008 Ms8.0 Wenchuan earthquake had some influence on the mid-southern segment of the Lijiang-Xiaojinhe fault, the Anninghe fault and the Jinshajiang fault, but not the Zemuhe fault, the Xiaojiang fault and the Red River fault as much.展开更多
Based on other previous researches, we recalculate the micro-displacement along the Heizi fault with recent deformation data of the Heizi reservoir. The result shows that activity characteristics of Heizi fault has ch...Based on other previous researches, we recalculate the micro-displacement along the Heizi fault with recent deformation data of the Heizi reservoir. The result shows that activity characteristics of Heizi fault has changed greatly since 1973 and have experienced four phases. The third phase is characteristics of normal fault, and others characteristic of reverse faults. Constructing the reservoir dam and reservoir sluice has important effect on present activity of the fault, even changed the activity characteristics of faults in some phases. Seismicity has some effect on deformation data and fault activity.展开更多
Active faults have special electromagnetic effect and remote sensing characteristics, and exhibit unique im-agery marks in satellite images. A comprehensive comparison of images of active faults in eastern China and a...Active faults have special electromagnetic effect and remote sensing characteristics, and exhibit unique im-agery marks in satellite images. A comprehensive comparison of images of active faults in eastern China and ananalysis of geologic and geomorphic data can tell us some characteristics of fault activity in the area during theneotectonic period: 1) The fault activities of the north-south tectonic zone, North China and Taiwan werestronger than those of southeastern and northeastern China; 2) the faulting in the north-south tectonic zone,North China and Taiwan has continued up to now, and most of the fault activites in southeastern andnorth-eastern China have become weaker since the Middle Pleistocene; 3) the activity is unsteady in time, mostbeing intermittent, or episodic, i.e. alternately strong and weak; 4) most active faults of a definite size can be di-vided into several segments which somewhat differ from each other in the characteristics of the activity.展开更多
Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation r...Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.展开更多
The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can b...The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.展开更多
The integrated energy systems,usually including electric energy,natural gas and thermal energy,play a pivotal role in the energy Internet project,which could improve the accommodation of renewable energy through multi...The integrated energy systems,usually including electric energy,natural gas and thermal energy,play a pivotal role in the energy Internet project,which could improve the accommodation of renewable energy through multienergy complementary ways.Focusing on the regional integrated energy system composed of electrical microgrid and natural gas network,a fault risk warning method based on the improved RelieF-softmax method is proposed in this paper.The raw data-set was first clustered by the K-maxmin method to improve the preference of the random sampling process in the RelieF algorithm,and thereby achieved a hierarchical and non-repeated sampling.Then,the improved RelieF algorithm is used to identify the feature vectors,calculate the feature weights,and select the preferred feature subset according to the initially set threshold.In addition,a correlation coefficient method is applied to reduce the feature subset,and further eliminate the redundant feature vectors to obtain the optimal feature subset.Finally,the softmax classifier is used to obtain the early warnings of the integrated energy system.Case studies are conducted on an integrated energy system in the south of China to demonstrate the accuracy of fault risk warning method proposed in this paper.展开更多
The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces ...The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces by the Yalung Tsangpo and Bangong (班公)-Nujiang (怒江) sutures. From south to north these are the Himalayan terrane, Gangdise terrane, and Qiangtang (羌塘) terrane. For the study area, there are widespread high-conductivity layers in the mid and lower crust, the top layers of which fluctuate intensively. The high-conductivity layer within the Gangdise terrane is deeper than those within the Qiangtang terrane and the Himalaya terrane, and the deepest high-conductivity layer is to the south of the Bangong-Nujiang suture. The top surface of the high-conductivity layer in the south of the Bangong-Nujiang suture is about 20 km lower than that in the north of it. The high-conductivity layer within the Gangdise terrane dips toward north and there are two high-conductivity layers within the crust of the southern Qiangtang terrane. In the upper crust along the profile, there are groups of lateral electrical gradient zones or distortion zones of different scales and occurrence indicating the distribution of faults and sutures along the profile. According to the electrical structure, the structural characteristics and space distribution of the Yalung Tsangpo suture, Bangong.Nujiang suture, and the major faults of Longmucuo (龙木错) and Geerzangbu are inferred.展开更多
In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the...In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the fault position,the closed-loop structure of the PSDN is skillfully exploited,and the common control strategies of IIDGs are considered.For asymmetrical faults,a fault line identification formula based on the negative-sequence current phase differences is presented,and a fault location formula only utilizing the negative-sequence current amplitudes is derived to calculated the fault position.For symmetrical faults,the positive-sequence current at both ends of lines and the current output from IIDGs are used to identify the fault line,and the positive-sequence current on multiple lines are used to pinpoint the fault position.In this method,corresponding current phasors are separated into amplitudes and phases to satisfy the limitation of communication level.The simulation results show that the error is generally less than 1%,and the accuracy of the proposed method is not affected by the fault type,fault position,fault resistance,load current,and the IIDG penetration.展开更多
To improve the reliability of coal mine safety monitoring systems we have analyzed the characteristics of a methane sensor, an important component of the monitoring system of production safety in a coal mine and studi...To improve the reliability of coal mine safety monitoring systems we have analyzed the characteristics of a methane sensor, an important component of the monitoring system of production safety in a coal mine and studied the main type and mode of faults when the sensor was used on-line. We introduced a new method based on artificial neural network to detect faults of methane sensors. In addition, using the output information of a single methane sensor, we established a sensor output model of a dynamic non-linear neural network for on-line fault detection. Finally, the fault of the heating wire of the sensor was simulated, indicating that, when the methane sensor had a fault, the predicted output of the neural network clearly deviated from the actual output, exceeding the pre-set threshold and showing that a fault had occurred in the methane sensor. The result shows that the model has good convergence and stability, and is quite capable of meeting the requirements for on-line fault detection of methane sensors.展开更多
In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material caus...In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material causes iustable yarn formation, the investigation focuses on the fault characteristic existing in the dynamic tension. Analyzing the dynamic spinning system, the phenomenon of over random shock in a spinning triangle is discovered to be the main physical event prior to yarn end breakage. The fault characteristic is further confirmed by dynamic tests and signal processing, and can be used to make an approach to predicting yarn end breakage. A relative energy feature is defined for evaluating the tendency of yarn end breakage, and its effectiveness is verified by on.line monitoring tests in the laboratory. The research results show that the proposed dynamic fault model has not only an advantage in indicating the presence of fault characteristics, but also great potentials in quantitating fault in online spinning monitoring.展开更多
Deep structure and material properties of faults can be understood by observing and simulating the particular phase in a fault fracture zone. This paper reviews the development of fault-zone seismic waves in the seism...Deep structure and material properties of faults can be understood by observing and simulating the particular phase in a fault fracture zone. This paper reviews the development of fault-zone seismic waves in the seismological domain. The present research status of fault-zone head wave and trapped wave are summarized systematically. Based on recent progress in this field,the paper discusses the prospect on the utilization of seismic wave in fault structure research.展开更多
Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate th...Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate the influence of AC faults on BIC itself and on DC sub-grid,which potentially threaten both converter safety and system reliability.This study first investigates AC fault influence on the BIC and DC bus voltage under different BIC control modes and different pre-fault operation states,by developing a mathematical model and equivalent sequence network.Second,based on the analysis results,a general accommodative current limiting strategy is proposed for BIC without limitations to specific mode or operation condition.Current amplitude is predicted and constrained according to the critical requirements to protect the BIC and relieving the AC fault influence on the DC bus voltage.Compared with conventional methods,potential current limit failure and distortions under asymmetric faults can also be avoided.Finally,experiments verify feasibility of the proposed method.展开更多
Taking the Huaihe to the Nvshanhu segment of the Tanlu( Tancheng-Lujiang) fault zone as the main research target to explore whether there has been new activity since the late Quaternary,and based on the interpretation...Taking the Huaihe to the Nvshanhu segment of the Tanlu( Tancheng-Lujiang) fault zone as the main research target to explore whether there has been new activity since the late Quaternary,and based on the interpretation of remote sensing images and repeated surface investigations,we excavated trenches at the sections where the tectonic landform is significant,identified and recorded the deformation patterns of the fault and analyzed the activity behavior. Samples of new activity and deformation were collected and oriented slices were ground based on the samples ' original state to make the micro structural analysis and demonstration. All of the above research shows very clear linear tectonic geomorphology along the fault,three trenches across the fault zone all revealed new deformation traces since late Quaternary. The latest stratum dislocated by the fault is the late Quaternary and Holocene. The main slip mode is stick slip,as represented typically by fault scarps,wedge accumulation,the faults and the filled cracks and so on. In general,it shows the characteristics of brittle high-speed deformation and belongs to the prehistoric earthquake ruins. The above understanding was confirmed partially by microscopic analysis. In addition,the similarities and differences and the possible reasons for the characteristics of the latest activities of the Tancheng-Lujiang fault zone in the north and south of the Huaihe River regions are also discussed in this paper.展开更多
The increase of renewable energy sources(RESs),especially wind power and photovoltaic,is bringing different fault features to the power system compared with the traditional syn-chronous generator,resulting in the urge...The increase of renewable energy sources(RESs),especially wind power and photovoltaic,is bringing different fault features to the power system compared with the traditional syn-chronous generator,resulting in the urgent need for precise fault analysis.According to the sequentially activated fault features,the short circuit characteristics of RES can be divided into three fault stages.Within the staged framework of fault duration,the published research is reviewed to provide a systematic analysis of RES fault characteristics.It's concluded that the hardware parameter determines the sub-transient fault features of RES,whereas RES control begins to dominate during the following transient stage.However,the neglection of voltage transition and unavailable RES output phase shall impede the application of the analytical conclusions in protection design.To solve the existing problems,interaction among RES and networks must be figured out.Therefore,the fault calculation of the integral RES-grid system is offered as the research prospect.展开更多
There are various types of distributed generators (DGs) with different grid integration strategies. The transient characteristics of the fault currents provided by the DGs are different to those of conventional synchr...There are various types of distributed generators (DGs) with different grid integration strategies. The transient characteristics of the fault currents provided by the DGs are different to those of conventional synchronous generators. In this paper, a distribution network with multi-type DGs is investigated, including consideration of DG low-voltage ride through (LVRT). The fault current characteristics of two typical DGs, i.e. an inverter-interfaced distributed generator (IIDG) and a doubly-fed induction generator (DFIG), are analyzed, considering the specific operation modes. Based on analysis of the fault characteristics, an equivalent model of the multi-type DGs under symmetrical/asymmetrical fault conditions is established. A fast-iterative fault calculation method for enhancing the calculation efficiency while avoiding local convergence is then proposed using an improved particle swarm optimization (PSO) algorithm. A simulation system of the distribution network with multi-type DGs is established in PSCAD/EMTDC. The simulation results validate the high accuracy and calculation efficiency of the proposed calculation method of the fault components. This can assist in the settings of the protection threshold.展开更多
Through field geological survey, the authors found that abundant thrust faults developed in the Longmen (龙门) Mountain thrust belt. These faults can be divided into thrust faults and strike-slip faults according to...Through field geological survey, the authors found that abundant thrust faults developed in the Longmen (龙门) Mountain thrust belt. These faults can be divided into thrust faults and strike-slip faults according to their formation mechanisms and characteristics. Furthermore, these faults can be graded into primary fault, secondary fault, third-level fault, and fourth-level fault according to their scale and role in the tectonic evolution of Longmen Mountain thrust belt. Each thrustfault is such as composed of several secondary faults, Qingchuan (青川)-Maowen (茂汶) fault zone is composed of Qiaozhuang (乔庄) fault, Qingxi (青溪) fault, Maowen fault, Ganyanggou (赶羊沟) fault, etc.. The Longmen Mountain thrust belt experienced early Indosinian movement, Anxian (安县) movement, Yanshan (燕山) movement, and Himalayan movement, and the faults formed gradually from north to south.展开更多
Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten th...Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method.展开更多
文摘1 Introduction The Dongshengmiao deposit is a super-large Zn-Pb polymetallic sulfide deposit which occurring in the Langshan-Zhaertaaishan metallogenic belt,and located in the western margin of the North China Platform.The ore-bodies of Dongshengmiao deposits are mainly hosted in the second Formation of Langshan Group.There are some studies on the geological characteristics(Peng et al.,2004),geological and
基金supported by National Key Research and Development Program of China(2016YFB0900100)
文摘Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the construction and operation of HWACT to analyze its fault features and corresponding protection technology. In this paper, the steady-state voltage and current characteristics of the bus bar and fault point and the steady-state overvoltage distribution along the line will be analyzed when a three-phase symmetrical short-circuit fault occurs on an HWACT line. On this basis, the threephase fault characteristics for longer transmission lines are also studied.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
基金supported by Basic Research Project of Institute of Earthquake Science,China Earthquake Administration (2011ES010102)
文摘Deformation characteristics of the Sichuan-Yunnan region during the two periods 1999--2007 and 2007--2009 are analyzed with a block deformation model and GPS velocity profiles. The results show that the direction of the principal compressive strain rate of the Northwest-Sichuan block - the Mid-Yunnan block - the Southwest-Yunnan block was characterized by a clockwise rotation from north to south. The Anninghe and the Zemuhe faults had some shear-strain accumulation. The southern segment of the Xiaojiang fault had mainly strike-slip movement, while the northern segment was mainly accumulating strain. The 2008 Ms8.0 Wenchuan earthquake had some influence on the mid-southern segment of the Lijiang-Xiaojinhe fault, the Anninghe fault and the Jinshajiang fault, but not the Zemuhe fault, the Xiaojiang fault and the Red River fault as much.
文摘Based on other previous researches, we recalculate the micro-displacement along the Heizi fault with recent deformation data of the Heizi reservoir. The result shows that activity characteristics of Heizi fault has changed greatly since 1973 and have experienced four phases. The third phase is characteristics of normal fault, and others characteristic of reverse faults. Constructing the reservoir dam and reservoir sluice has important effect on present activity of the fault, even changed the activity characteristics of faults in some phases. Seismicity has some effect on deformation data and fault activity.
文摘Active faults have special electromagnetic effect and remote sensing characteristics, and exhibit unique im-agery marks in satellite images. A comprehensive comparison of images of active faults in eastern China and ananalysis of geologic and geomorphic data can tell us some characteristics of fault activity in the area during theneotectonic period: 1) The fault activities of the north-south tectonic zone, North China and Taiwan werestronger than those of southeastern and northeastern China; 2) the faulting in the north-south tectonic zone,North China and Taiwan has continued up to now, and most of the fault activites in southeastern andnorth-eastern China have become weaker since the Middle Pleistocene; 3) the activity is unsteady in time, mostbeing intermittent, or episodic, i.e. alternately strong and weak; 4) most active faults of a definite size can be di-vided into several segments which somewhat differ from each other in the characteristics of the activity.
文摘Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.
基金Project(51275030)supported by the National Natural Science Foundation of ChinaProject(2016JBM051)supported by the Fundamental Research Funds for the Central Universities,China
文摘The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.
基金Supported by National Natural Science Foundation of China(No.51777193).
文摘The integrated energy systems,usually including electric energy,natural gas and thermal energy,play a pivotal role in the energy Internet project,which could improve the accommodation of renewable energy through multienergy complementary ways.Focusing on the regional integrated energy system composed of electrical microgrid and natural gas network,a fault risk warning method based on the improved RelieF-softmax method is proposed in this paper.The raw data-set was first clustered by the K-maxmin method to improve the preference of the random sampling process in the RelieF algorithm,and thereby achieved a hierarchical and non-repeated sampling.Then,the improved RelieF algorithm is used to identify the feature vectors,calculate the feature weights,and select the preferred feature subset according to the initially set threshold.In addition,a correlation coefficient method is applied to reduce the feature subset,and further eliminate the redundant feature vectors to obtain the optimal feature subset.Finally,the softmax classifier is used to obtain the early warnings of the integrated energy system.Case studies are conducted on an integrated energy system in the south of China to demonstrate the accuracy of fault risk warning method proposed in this paper.
基金This paper is supported by the National Natural Science Foundation of China (No. 40404006)the Focused Subject Program of Beijing (No. XK104910598).
文摘The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces by the Yalung Tsangpo and Bangong (班公)-Nujiang (怒江) sutures. From south to north these are the Himalayan terrane, Gangdise terrane, and Qiangtang (羌塘) terrane. For the study area, there are widespread high-conductivity layers in the mid and lower crust, the top layers of which fluctuate intensively. The high-conductivity layer within the Gangdise terrane is deeper than those within the Qiangtang terrane and the Himalaya terrane, and the deepest high-conductivity layer is to the south of the Bangong-Nujiang suture. The top surface of the high-conductivity layer in the south of the Bangong-Nujiang suture is about 20 km lower than that in the north of it. The high-conductivity layer within the Gangdise terrane dips toward north and there are two high-conductivity layers within the crust of the southern Qiangtang terrane. In the upper crust along the profile, there are groups of lateral electrical gradient zones or distortion zones of different scales and occurrence indicating the distribution of faults and sutures along the profile. According to the electrical structure, the structural characteristics and space distribution of the Yalung Tsangpo suture, Bangong.Nujiang suture, and the major faults of Longmucuo (龙木错) and Geerzangbu are inferred.
基金supported by State Grid Science and Technology Project:Research on Key Protection Technologies for New-type Urban Distribution Network with Controllable Sources and Loads(5100-201913019A-0-0-00).
文摘In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the fault position,the closed-loop structure of the PSDN is skillfully exploited,and the common control strategies of IIDGs are considered.For asymmetrical faults,a fault line identification formula based on the negative-sequence current phase differences is presented,and a fault location formula only utilizing the negative-sequence current amplitudes is derived to calculated the fault position.For symmetrical faults,the positive-sequence current at both ends of lines and the current output from IIDGs are used to identify the fault line,and the positive-sequence current on multiple lines are used to pinpoint the fault position.In this method,corresponding current phasors are separated into amplitudes and phases to satisfy the limitation of communication level.The simulation results show that the error is generally less than 1%,and the accuracy of the proposed method is not affected by the fault type,fault position,fault resistance,load current,and the IIDG penetration.
基金Projects 50534080 supported by the National Natural Science Foundation of ChinaNCET-05-0602 by the Program for New Century Excellent Talents in Universities of China2006KJ019B by the National Natural Science Foundation of Anhui Province Education Office
文摘To improve the reliability of coal mine safety monitoring systems we have analyzed the characteristics of a methane sensor, an important component of the monitoring system of production safety in a coal mine and studied the main type and mode of faults when the sensor was used on-line. We introduced a new method based on artificial neural network to detect faults of methane sensors. In addition, using the output information of a single methane sensor, we established a sensor output model of a dynamic non-linear neural network for on-line fault detection. Finally, the fault of the heating wire of the sensor was simulated, indicating that, when the methane sensor had a fault, the predicted output of the neural network clearly deviated from the actual output, exceeding the pre-set threshold and showing that a fault had occurred in the methane sensor. The result shows that the model has good convergence and stability, and is quite capable of meeting the requirements for on-line fault detection of methane sensors.
文摘In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material causes iustable yarn formation, the investigation focuses on the fault characteristic existing in the dynamic tension. Analyzing the dynamic spinning system, the phenomenon of over random shock in a spinning triangle is discovered to be the main physical event prior to yarn end breakage. The fault characteristic is further confirmed by dynamic tests and signal processing, and can be used to make an approach to predicting yarn end breakage. A relative energy feature is defined for evaluating the tendency of yarn end breakage, and its effectiveness is verified by on.line monitoring tests in the laboratory. The research results show that the proposed dynamic fault model has not only an advantage in indicating the presence of fault characteristics, but also great potentials in quantitating fault in online spinning monitoring.
基金sponsored by the Foundation of China Scholarship Council,the"Earthquake Science Talents Training Program"of China Earthquake Administration,the Sub-project of National Key Technology R&D Program(1012BAK19804-01-05)the Natural Science Foundation of Shandong Province(ZR2012DQ006),China
文摘Deep structure and material properties of faults can be understood by observing and simulating the particular phase in a fault fracture zone. This paper reviews the development of fault-zone seismic waves in the seismological domain. The present research status of fault-zone head wave and trapped wave are summarized systematically. Based on recent progress in this field,the paper discusses the prospect on the utilization of seismic wave in fault structure research.
文摘Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate the influence of AC faults on BIC itself and on DC sub-grid,which potentially threaten both converter safety and system reliability.This study first investigates AC fault influence on the BIC and DC bus voltage under different BIC control modes and different pre-fault operation states,by developing a mathematical model and equivalent sequence network.Second,based on the analysis results,a general accommodative current limiting strategy is proposed for BIC without limitations to specific mode or operation condition.Current amplitude is predicted and constrained according to the critical requirements to protect the BIC and relieving the AC fault influence on the DC bus voltage.Compared with conventional methods,potential current limit failure and distortions under asymmetric faults can also be avoided.Finally,experiments verify feasibility of the proposed method.
基金jointly funded by the Anhui provincial geological public-welfare project“New Activities of Quaternary and Medium Velocity Structure Exploration and Evaluation for Key Sections of the Tan-Lu Fault Zone(the Anhui segment)”(2015-g-25)the project of“3-D Seismic Section Model and Earthquake Prediction Research in the Tanlu Fault Zone”,China Earthquake Administration(TYZ20160101)
文摘Taking the Huaihe to the Nvshanhu segment of the Tanlu( Tancheng-Lujiang) fault zone as the main research target to explore whether there has been new activity since the late Quaternary,and based on the interpretation of remote sensing images and repeated surface investigations,we excavated trenches at the sections where the tectonic landform is significant,identified and recorded the deformation patterns of the fault and analyzed the activity behavior. Samples of new activity and deformation were collected and oriented slices were ground based on the samples ' original state to make the micro structural analysis and demonstration. All of the above research shows very clear linear tectonic geomorphology along the fault,three trenches across the fault zone all revealed new deformation traces since late Quaternary. The latest stratum dislocated by the fault is the late Quaternary and Holocene. The main slip mode is stick slip,as represented typically by fault scarps,wedge accumulation,the faults and the filled cracks and so on. In general,it shows the characteristics of brittle high-speed deformation and belongs to the prehistoric earthquake ruins. The above understanding was confirmed partially by microscopic analysis. In addition,the similarities and differences and the possible reasons for the characteristics of the latest activities of the Tancheng-Lujiang fault zone in the north and south of the Huaihe River regions are also discussed in this paper.
基金supported by the National Natural Science Foundation of China under Grants 52061635102 and 51725702.
文摘The increase of renewable energy sources(RESs),especially wind power and photovoltaic,is bringing different fault features to the power system compared with the traditional syn-chronous generator,resulting in the urgent need for precise fault analysis.According to the sequentially activated fault features,the short circuit characteristics of RES can be divided into three fault stages.Within the staged framework of fault duration,the published research is reviewed to provide a systematic analysis of RES fault characteristics.It's concluded that the hardware parameter determines the sub-transient fault features of RES,whereas RES control begins to dominate during the following transient stage.However,the neglection of voltage transition and unavailable RES output phase shall impede the application of the analytical conclusions in protection design.To solve the existing problems,interaction among RES and networks must be figured out.Therefore,the fault calculation of the integral RES-grid system is offered as the research prospect.
基金supported by National Natural Science Foundation of China under Grant 51807091the China Postdoctoral Science Foundation under Grant 2019M661846Open Research Fund of Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education,EPSRC under Grant EP/N032888/1,and the International Science and Technology Collaborative Project of Policy Guidance Plan of Jiangsu Province under Grant BZ2018026.
文摘There are various types of distributed generators (DGs) with different grid integration strategies. The transient characteristics of the fault currents provided by the DGs are different to those of conventional synchronous generators. In this paper, a distribution network with multi-type DGs is investigated, including consideration of DG low-voltage ride through (LVRT). The fault current characteristics of two typical DGs, i.e. an inverter-interfaced distributed generator (IIDG) and a doubly-fed induction generator (DFIG), are analyzed, considering the specific operation modes. Based on analysis of the fault characteristics, an equivalent model of the multi-type DGs under symmetrical/asymmetrical fault conditions is established. A fast-iterative fault calculation method for enhancing the calculation efficiency while avoiding local convergence is then proposed using an improved particle swarm optimization (PSO) algorithm. A simulation system of the distribution network with multi-type DGs is established in PSCAD/EMTDC. The simulation results validate the high accuracy and calculation efficiency of the proposed calculation method of the fault components. This can assist in the settings of the protection threshold.
基金supported by the National Natural Science Foundation of China (Nos. 40672143, 40472107, 40172076)the National Basic Research Program of China (Nos. 2005CB422107, G1999043305)+1 种基金Development Foundation of Key Laboratory for Hydrocarbon Accumulation of the Ministry of Education of China (No. 2003-03)Project of the South-west Petroleum Natural Gas Subcompany of SINOPEC (No. GJ-51-0602)
文摘Through field geological survey, the authors found that abundant thrust faults developed in the Longmen (龙门) Mountain thrust belt. These faults can be divided into thrust faults and strike-slip faults according to their formation mechanisms and characteristics. Furthermore, these faults can be graded into primary fault, secondary fault, third-level fault, and fourth-level fault according to their scale and role in the tectonic evolution of Longmen Mountain thrust belt. Each thrustfault is such as composed of several secondary faults, Qingchuan (青川)-Maowen (茂汶) fault zone is composed of Qiaozhuang (乔庄) fault, Qingxi (青溪) fault, Maowen fault, Ganyanggou (赶羊沟) fault, etc.. The Longmen Mountain thrust belt experienced early Indosinian movement, Anxian (安县) movement, Yanshan (燕山) movement, and Himalayan movement, and the faults formed gradually from north to south.
基金supported by National Natural Science Foundation of China under Grant 51977066。
文摘Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method.